Subject Index

A

Alloys
nickel, 10-18
shape memory alloy, 10-18
titanium, 10-18, 75-78

Aluminum bone tube models, 12-18

Araldite disks, 14-18

ASTM Committee F-4
Medical and Surgical Materials and Devices, 1-2
ASTM Standard F 383, 3-9
modifications of, 9
Axial strain, 29-33, 68-78, 80-85
versus rod geometry, 90-98

B

Bending tests
ASTM Standard F 383, 4, 7-8
critique of, 26
effect of hole, 5-8
four-point method, 22-23
Grosse-Kempf nail, 60-64
interlocking versus noninterlocking rods/nails, 54-59, 60-64, 68-78
Küntscher nail, 5-6, 7-9
rod geometry, 89, 92-94
shape memory alloy nail, 10, 15-18
various rods/nails, 22-23, 68-78, 92-94

Biomet Interlocking rod, 67
insertion, 75
stiffness measurements, 75-78

Bone loss, 63-64

Bones plates
versus intramedullary rods, 87

Bone tubes, artificial, 12-18, 66-78

Brooker-Wills rod, 67
axial strain, 80-85
bending tests, 60-64
clinical evaluation, 119-128, 130-135
cyclic loading, 45-51, 82-83
insertion, 69, 75, 119-128
stiffness measurements, 45-51, 68-78
strength, 45-51
torsion tests, 45-51, 60-64, 80-85

Clinical evaluations
Brooker-Wills rod, 119-128, 130-135

Ender nail, 161-174
femur nonunions, 154-160
Grosse-Kempf rod, 130-135, 181-188
Hansen-Street nail, 152-153
Küntscher nail, 130-135, 143-151, 154-160
nail impaction versus interlocking nailing, 130-135
Rush pin, 175, 179-180

Complications
intraoperative
Brooker-Wills rod, 119-128
case histories, 98-101
effect of reaming, 112-117
Hansen-Street nail, 153
Küntscher nail, 112-117
Küntscher Y-nail, 146-148
nail impaction versus interlocking nailing, 132-135
Schneider nail, 112-117
Zickel nail, 36-37

postoperative
Brooker-Wills rod, 121-128, 132-133
case histories, 98-101
effect of reaming, 112-117
Ender nail, 168-169
Grosse-Kempf rod, 132-133, 183-188
Hansen-Street nail, 153
hip fractures, 146-148
Küntscher nail, 132-133
nail impaction versus interlocking nailing, 132-135
Rush pin, 180
Schneider nail, 112

Computer programs
for nail geometry, 88-89, 92
for Zickel nail insertion, 37-42

Cross-nailing (see Distal locking rods; Interlocking rods/nails)

D

Deformation
shape memory nail, 10-18

Diameter, reamed bone hole, 93-96

Diameter, rod/nail
effect on rigidity, 3-9
effect on strength, 3-9

Distal locking rods (see also Interlocking...
INTRAMEDULLARY RODS

Distal locking rods (cont.)
rods/nails mechanical testing of, 44-51, 80-85

Ender nail, 67
insertion of, 68, 162, 168-169
postoperative complications, 168
rigidity of, 68-78
Extraction of rod, 10-18, 41

Femoral bursting, 41-42, 87-105, 133
case histories, 98-104
Femur
aluminum model of, 12-18
cadaver specimens, 21-24, 27-29, 45-51, 53-59, 80-85, 89-98
fractures of (see Fractures, femur)
plastic model of, 66
Fixation
dynamic, 28-33
static, 28-33, 53-59
Fracture callus, 115-116
Fractures
communited versus uncommunited, 108-117
intraoperative, 41-42, 87-105, 133
nonunion of, 154-160
hip, 137-151, 161-174
peritrochanteric, 162-166
subtrochanteric, 35, 102
unstable, 65-66

Geometric modeling
femur, 37
insertion, Zickel nail, 37-42
Grosse-Kempf nail, 67
axial strain tests, 29-33
bending tests, 60-64
clinical evaluation of, 130-135, 181-188
complications, postoperative, 108, 183-188
failures, 183
physiological loading, 54-59
rigidity of, 45-51, 75-78
shear strain tests, 28-33
stiffness measurements, 68-78
strength, 45-51
torsion tests, 45-51, 54-59, 60-64, 80-85

Hansen-Street nail
clinical evaluation, 152-153
insertion, 152-153
Hip
fractures, 137-151, 161-174
Hoop stress, 90-98

Impaction, nail, 132-135
Insertion (see also Reaming)
Brooker-Wills rod
intraoperative complications, 119-128
operative procedure, 121
computer-aided design of, 37-42
Ender nail, 162, 168-169
Hansen-Street nail, 152-153
Küntscher nail, 112-117
Küntscher Y-nail, 139-143
laboratory simulation
various rods/nails, 10-18, 68-75, 85-98
Zickel nail, 37-42, 68-75, 85-98
Rush pin, 175-179
Schneider nail, 146-148
shape memory alloy nail, 10-18
Zickel nail, 68-75, 85-98
computer-aided design of, 37-42
intraoperative complications, 36-37
Interfaces, fracture
movement of, 53-59
Interlocking rods/nails (see also Biomet rod;
Brooker-Wills rod; Distal locking rods; Grosse-Kempf nail; Russell-Taylor nail; Titanium alloys; Utah nail;
Williams Y-nail; Zickel nail)
versus noninterlocking, 28-33, 54-59, 60-64, 67-78, 130-135

Knee pain
postoperative complication, 168
Küntscher nail
bending tests, 4-9
clinical evaluation, 108-117
cyclic loading, 8
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigidity tests</td>
<td>4-8, 68-78</td>
</tr>
<tr>
<td>Torsion tests</td>
<td>4-6</td>
</tr>
<tr>
<td>Used for femur nonunions</td>
<td>154-160</td>
</tr>
<tr>
<td>Used for trochanteric fractures</td>
<td>137-151</td>
</tr>
<tr>
<td>Biomechanical evaluation</td>
<td>138-139</td>
</tr>
<tr>
<td>Nail plate comparison</td>
<td>138-139</td>
</tr>
<tr>
<td>Loading</td>
<td></td>
</tr>
<tr>
<td>Cyclic</td>
<td></td>
</tr>
<tr>
<td>Grosse-Kempf rod</td>
<td>45-51, 82-83</td>
</tr>
<tr>
<td>Kuntscher nail</td>
<td>8</td>
</tr>
<tr>
<td>Utah nail</td>
<td>82-83</td>
</tr>
<tr>
<td>Physiological</td>
<td></td>
</tr>
<tr>
<td>Grosse-Kempf nail</td>
<td>27-33, 54-59</td>
</tr>
<tr>
<td>Interlocking versus noninterlocking rods/nails</td>
<td>66, 68-78</td>
</tr>
<tr>
<td>Russell-Taylor nail</td>
<td>27-33, 54-59</td>
</tr>
<tr>
<td>Loosening</td>
<td></td>
</tr>
<tr>
<td>Nails in osteoporotic bone</td>
<td>44-51</td>
</tr>
<tr>
<td>Manufacturers</td>
<td></td>
</tr>
<tr>
<td>Design input, rods/nails</td>
<td>1</td>
</tr>
<tr>
<td>Role in standardization</td>
<td>1</td>
</tr>
<tr>
<td>Model, bone</td>
<td>12-18, 66-78</td>
</tr>
<tr>
<td>Nail plate repair</td>
<td></td>
</tr>
<tr>
<td>Hip fractures</td>
<td>138-139</td>
</tr>
<tr>
<td>Nickel alloys</td>
<td>10-18</td>
</tr>
<tr>
<td>Nonunions, fracture intramedullary nailing of</td>
<td>154-160, 156-159</td>
</tr>
<tr>
<td>Operative procedures</td>
<td></td>
</tr>
<tr>
<td>Brooker-Wills rod</td>
<td>121, 131</td>
</tr>
<tr>
<td>Complications of (see Complications)</td>
<td></td>
</tr>
<tr>
<td>Ender nail</td>
<td>162, 168-169</td>
</tr>
<tr>
<td>Grosse-Kempf rod</td>
<td>131</td>
</tr>
<tr>
<td>Hansen-Street nail</td>
<td>152-153</td>
</tr>
<tr>
<td>Kuntscher Y-nail</td>
<td>131</td>
</tr>
<tr>
<td>Reaming</td>
<td></td>
</tr>
<tr>
<td>Bone canal diameter</td>
<td>93-95</td>
</tr>
<tr>
<td>Clinical evaluation</td>
<td></td>
</tr>
<tr>
<td>Fracture callus formation</td>
<td>115-116</td>
</tr>
<tr>
<td>Kuntscher nail</td>
<td>108-117</td>
</tr>
<tr>
<td>Schneider rod</td>
<td>108-117</td>
</tr>
<tr>
<td>Penetration tests</td>
<td>23-24, 93-96</td>
</tr>
<tr>
<td>Rigidity tests</td>
<td></td>
</tr>
<tr>
<td>Grosse-Kempf rod</td>
<td>46-51, 68-78</td>
</tr>
<tr>
<td>Interlocking versus noninterlocking rods/nails</td>
<td>60-64, 68-78</td>
</tr>
<tr>
<td>Kuntscher nail</td>
<td>4-8, 68-78</td>
</tr>
<tr>
<td>Osteoporotic versus normal bone</td>
<td>46-51</td>
</tr>
<tr>
<td>Rod/nail geometry</td>
<td>89, 92-93</td>
</tr>
<tr>
<td>Rosette strain gage</td>
<td>28-33</td>
</tr>
<tr>
<td>Rush pin</td>
<td></td>
</tr>
<tr>
<td>Clinical evaluation</td>
<td>175-180</td>
</tr>
<tr>
<td>Operative procedure</td>
<td>176-179</td>
</tr>
<tr>
<td>Russell-Taylor nail</td>
<td>67</td>
</tr>
<tr>
<td>Axial strain</td>
<td>28-33</td>
</tr>
<tr>
<td>Dynamic/static fixation</td>
<td>28-33</td>
</tr>
<tr>
<td>Insertion</td>
<td>75</td>
</tr>
<tr>
<td>Physiological loading</td>
<td>27-33</td>
</tr>
<tr>
<td>Shear strain</td>
<td>28-33</td>
</tr>
<tr>
<td>Stiffness measurements</td>
<td>68-78</td>
</tr>
<tr>
<td>Torsion tests</td>
<td>54-59, 68-78</td>
</tr>
<tr>
<td>Sampson rod</td>
<td>67</td>
</tr>
<tr>
<td>Insertion</td>
<td>69</td>
</tr>
<tr>
<td>Stiffness measurements</td>
<td>68-78</td>
</tr>
<tr>
<td>Torsion tests</td>
<td>68-78</td>
</tr>
<tr>
<td>Schneider nail</td>
<td></td>
</tr>
<tr>
<td>Clinical evaluations</td>
<td>108-117</td>
</tr>
<tr>
<td>Intraoperative/postoperative complications</td>
<td>112</td>
</tr>
<tr>
<td>Shape memory alloy</td>
<td>10-18</td>
</tr>
<tr>
<td>Silicon heater</td>
<td>28-33</td>
</tr>
<tr>
<td>Silicon heater for experimental nail deformation</td>
<td>10</td>
</tr>
</tbody>
</table>
Slotted cloverleaf nail, 67-78
Slotted versus unslotted nails
mechanical testing of, 54-59
Spring-back angle, 23-24, 46, 62-63
Stainless steel pin, 175-180
Standardization
medical/surgical equipment
ASTM Committee F-4, 1-2
ASTM Standard F 383, 3-9
static bend and torsion testing of intramedullary rods
ASTM Standard F 383, 4
Starting hole
and femur perforation, 97-98, 101-105
Stiffness (see Rigidity tests)
Strain gages, 28-33
Strength
distal locking rods/nails, 45-47, 50-51
Küntschcr nail, 8
osteoporotic versus normal bone, 45-51

T
Temperature, elevated
shape memory alloy nail deformation, 10, 12, 15-18
Test methods (see ASTM Standard F 383; Axial strain; Bending tests; Computer programs; Geometric modeling; Hoop stress; Loading; Penetration tests; Rigidity tests; Shear strain; Spring-back angle; Torsion tests)
Titanium alloy nail, 10-18, 67
insertion, 75
stiffness measurements, 75-78
Torsion tests
ASTM Standard F 383, 4
Brooker-Wills rod, 80-85
critique of, 26
Ender nail, 68-78
Grosse-Kempf nail, 45-51, 54-59, 60-64, 68-78, 80-85
interlocking versus noninterlocking rods/nails, 54-59, 60-64, 68-78
Küntschcr nail, 4-6
osteoporotic versus normal femurs, 45-47, 50-51
rod/nail geometry, 89, 92-94
Russell-Taylor nail, 54-59, 68-78
testing method, 23
Utah nail, 80-85
various rods/nails, 54-59, 68-78, 89, 92-94
Zickel nail, 68-78
Trauma patients, 120-121, 131-133, 175, 182

U
Utah nail
axial strain, 80-85
cyclic loading, 82-83
torsion tests, 80-85

W
Walking gait
and laboratory testing, rods/nails, 26-33, 66, 76-78
Williams Y-nail, 67
insertion, 75
stiffness measurements, 68-78

Z
Zickel nail, 67
insertion, 36-42, 69
stiffness measurements, 68-78