Subject Index

A

Absorbed moisture
effect on epoxy resin matrix material, 29
Adhesion, interfacial, 197
Adhesive layers
effectiveness in delamination suppression, 363
wedge-driven delamination, 196, 197
Adiabatic thermal emission, 68, 78–80(figs), 81
AFRP (see Aramid fiber-reinforced plastics)
Airbus fin box program
candidate material systems, 34
environment effect
on life, 39(fig)
on residual strength, 38(fig)
fatigue life results, 40
loading sequence, 31
quasirealistic loading, 33, 41(table), 42
residual strength, 40, 41(table), 42
Aircraft structures
design of composite materials for postimpact strength, 326
Airframe structures
design, 29–44
Aluminum cylinders, 377–378
Anisotropic materials
temperature changes linked before and after deformations, 69
Analytical methods
to model damage mechanisms, 137
Aramid fiber-reinforced plastics (AFRP), 1104
ASTM Standards
D 2344-76, 34d
Autoclave curve cycle
for CFRP material systems, 105(table)
Axial moduli, 238(table)
Axial strain, Kevlar epoxy specimens
vs axial load, 322(fig)

B

Beam theory, 229, 230 (See also Linear beam theory)
Behavior of materials
graphite fiber composite laminates, 5–18
Bend test
cylindrical, 397
of damaged specimens, 388
residual load relations, 364
Bending stress, 141, 143(fig), 238
Birefringence distribution, 76–77(figs)
Bismaleimides (BMI), 356, 357(table)
Block-loading sequence, notched laminates, 47(fig), 54, 56(figs), 57
BMI (See Bismaleimides)
Brittle bismaleimides, 356, 357(table)
Brittle composite systems, 299
Brittle epoxy, 387–389
Brittle matrix (epoxy) composites
tests to determine behavior, 6
Brittle systems
bismaleimides, 256, 257(table)
thermoplastic composites, 256, 257(table)
unidirectional graphite/epoxy composites, 203, 240, 248
Brittle thermoplastics, 356, 357(table)
Buckling
compression failures, 119, 121
compressive stress, 138, 162
out-of-plane, 164, 170–172(figs)
Buckling—micrographs, 129–133(figs)

C

Cantilever beam enclosed notch (CBEN)
specimens, 253, 254(fig), 256, 258(table), 260(fig, table) 261(table)
tests, 266–267
Carbon/epoxy cylinders
impact energy, 357(fig), 381(figs)
Carbon/epoxy cylinders—Continued
loading, 380
material properties, 375(table)
Carbon fiber composites
fracture behavior, 182, 185, 190
PEEK laminates—fracture surface, 193, 195
reinforced plastics (GFRP), 104
Carbon/epoxy prepregs—specimens, 33
Carbon fiber-reinforced plastics, 1160 (CFRP), 103
CBEN (See Cantilever beam enclosed notch)
Center-notched graphite/epoxy laminates, 66
CFRP (See Carbon fiber reinforced plastic)
Cleavage test
glass/epoxy composites, 251
Coating materials, photoelastic index of refraction
stressed and unstressed, 68
Compliance calibration
mode I and mode II delamination, 258(table), 265(table)
Composite cylinders
models for interpreting lateral impact, 384
Composite laminates
behavior, 251–252, 339–355
compression buckling, 137–149
cyclic delamination growth, 296
delamination buckling, 137–149
delamination characteristics, 270
for aircraft structures, 326
material properties, 299(table), 326
predictive methods for structural durability and damage tolerance, 341, 353
structural durability and damage tolerance—predictive methods, 339–355
Composite materials
compression failures, 122
damage initiation, 66
fatigue life, 87
Kevlar/epoxy plates, 387
matrix toughness, 5
open-hole laminates—material failures, 122
transverse cracking, 103
Composite pressure vessels, 373
Composite structure certification, 29
Composite structures
damage tolerant materials, 5
Compression, 162, 170(fig), 171(fig)
Compression behavior—macroscopic, 125, 126(table)
Compression buckling, 137
Compression failures
composite laminates, 118, 120(fig), 121, 137
notched composite laminates, 121
open-hole composite laminates, 118
Compression loading, 128
Compression stiffness, 14, 119
Compression strengths
open-hole composite laminates, 126(table)
Compression tests
open-hole composite laminates, 119, 123, 124(fig)
PEEK materials, 8
Compressive fatigue, 343(fig)
Compressive forces, 5, 30–31
Compressive life and durability
graphic fiber epoxy, 342(fig)
Compressive strength compared to residual strength, 43(fig)
Compressive stress, 121–122
Compressive stress vs crush-zone size
open-hole composite laminates, 128(fig)
Computer program
algorithm, 147
to predict delamination buckling, 137
Constant strain triangles, 154
Contact behavior and dynamic impact response
vs impact resistance properties, 364, 372
Contact law, 356, 365, 366(table)
Contact stresses
impact of pressure vessels, 374
Coupon specimens—form
Airbus fin box program, 32(fig)
Crack closure, 162
Crack density, 20, 21(fig), 22
Crack extension, 146, 209
Crack extension force, 181
Crack formation, 107
Crack growth behavior
graphite/epoxy composites, 209
mode I—wedge driven delamination design, 190, 193, 198
mode II fractography, 216–219(figs)
Crack growth rates
constant crack tip position, 188
finite-deformation elasticity, 185
interlaminar fatigue, 168–176(figs)
interlaminar shear fracture toughness, 240–242
notched laminates, 51–55
Crack length, 227
Crack path tortuosity, 193, 195
Crack propagation, 202, 203
Crack tip damage
- effect on fracture stress, 327
- Crack tip process zone, 188, 196–197, 209
- Crack velocity, 184
- Cracked-lap-shear (CLS) fatigue model geometries, 46, 164–165(figs)
- Cracked-lap-shear specimens dimensions, 298(fig)
- strain energy release rates, 300(fig)
- Cracking formation in transverse plies, 103
- Cracking, premature, 114–115
- Cracking, transverse, 320, 348
- Cracks, 29–30
- Critical energy release rate, 204, 209
- Critical strain energy release, 6
- Cross-ply composite laminates fatigue life, 19
- Crush-zone size, 128(fig)
- Cure cycle for CFRP material systems, 105
- Cyclic delamination behavior, 296, 304 (table), 307, 308(fig)
- Cyclic forces, 5, 15
- Cyclic loading
 - delamination resistance, 244, 248
 - durability and damage tolerance, 352
 - free edge delamination, 283
 - graphite fiber composite, 6
 - notched laminates, 66
- Cyclic shear delamination, 227(fig)
- Cyclic shear precrack, 227(fig)
- Cyclic stress levels
 - normalized vs PEEK materials, 8, 9(fig, table), 10, 16(figs)
 - normalized vs specimens cycled to failure, 9(table), 10(fig), 16(figs)
- Cylinder tests
 - manufacture of specimens experimental procedure, 329(fig)
 - material properties, 328(fig)
 - quasi-isotropic laminates, 328(table)
 - test matrix for cylinders, 330(table)
- Cylinders
 - carbon/epoxy compound material system
 - elastic properties, 374, 375(table)
 - impact energy, 375(fig)
 - pressure vessel impact stresses, 374
- Cylindrical bending tests, 397

D

Damage
- accumulation, 19
- affect on stress distribution, 80
- bend test, 388, 397
- by low-velocity impact, 356
- failure prediction, 384
- fiber fractures, 21
- in composite laminates, 19, 23, 27
- in notched laminates, 66
- initiation and growth, 66, 81
- kinking of fibers, 135
- life prediction, 87
- matrix cracks, followed by delamination, 80
- micrograph studies, 129–131(figs)
- modes II delamination, 217
- models, 19, 87, 90–96(equations, tables), 119, 120(fig)
- modes, 326, 335
- notched laminates, 66
- open-hole composite laminates, 123, 135
- rotation and kinking of fiber, 135
- theory, 87
- tolerance, 255, 271, 297
- tolerance analysis, 298
- tolerance of fiber composites to aerospace environments, 339
- tolerant materials, 5, 339
- under cyclic tensile loading, 19
- Damage mechanism models, 137
- Damage tolerance, 201
- DCB (See Double-cantilever beam)
- Defects in composites, 353
- Deflection
 - compliance calibration curves, 235
 - glass/epoxy vs Kevlar/epoxy plate, 393
 - of split laminate by frictionless roller, 184(fig)
- Deformations
 - influenced by changing elastic properties, 70
 - model of cantilever deflection, 182
 - under impact loading, 142
- Degradation of composite materials
 - models, 94–97(equations, table)
 - residual strength, 87
 - stiffness, 401
 - under cyclic loading, 91
- Delaminating loads
 - response of composite materials, 270
- Delamination
 - adhesive layers, 363
 - at crack intersections, composite laminates, 19
 - bismaleimides and brittle thermoplastics, 356
 - composite cylinders, 373–385
Delamination—Continued

crack propagation, 383
effect of impact energy, 380, 381(fig)
extension, 382
fatigue loading, 49(fig)
following matrix cracks, 80
following rotation and kinking, 135
glass/epoxy under static and fatigue conditions, 270, 276(fig), 335
growth under fatigue conditions, 163, 164, 168–176(figs)
impact damage, 356
Kevlar/epoxy plates, 387, 394
lengths determined using dye-penetrant X-ray radiography, 47
low-temperature edge stresses, 150, 160
mode of failure, 356
notched laminates, 45–50, 51(fig)
open-hole composite laminates, 132
orthotropic specimens, 76–80
pressure vessels, 374
quasi-isotropic specimens, 77–80
resistance ability of laminates, 5, 14–15, 17
shear fracture toughness, 224, 229, 240–242, 244–245
X-ray radiographs, 49(figs)

Delamination behavior

cyclic growth in graphite fiber, 296
thermosetting and thermoplastic composites, 251

Delamination buckling

analysis, 138, 145–146
fatigue crack growth rates, 162–173
instability point, 146(fig)
under impact loading, 137
under static and fatigue loading conditions, 137

Delamination damage

low-impact speeds, 389

Delamination failure

in filament-wound composite tubes, 314, 318(fig), 319(fig)
matrix toughness effect, 297

Delamination fracture toughness, 209

Delamination growth, 244, 246–247

Delamination growth damage modes, 46

Delamination growth position/direction, 48

Delamination growth rates

glass/epoxy laminates, 273, 278–294(figs)
graphite fiber composites, 303(fig), 305
holes in carbon fiber, 45
notched laminates, 51–56(figs), 64–65
under cyclic loading, 297, 308

Delamination resistance

interlaminar shear fracture toughness and fatigue, 244
mode II fracture toughness, 202
of thermosetting and thermoplastic composites, modes I and II, 266, 309

Design load levels for composite airframe structures, 40

Destructive evaluation techniques, 7

Displacement behavior, 243

Double-cantilever-beam (DCB)

interlaminar fracture toughness, 181–182
loading arrangements, 252
mode—Syy stress, 212
model geometrics, 46
specimen dimensions, 253(fig), 297(fig)
specimens, 252, 253(fig), 297(fig)
Double cracked lap-shear specimen, 164–165(figs)

Ductility, 103

Dugdale model, 118, 122(fig), 133–135(figs)

Durability design criteria for composite structures, 297, 299

Dynamic buckling analysis, 138, 139(fig)
Dynamic delamination buckling, 138
Dynamic displacement, 142
Dynamic failure strain, 356, 369
Dynamic loading effect, 97
Dynamic response behavior
composite cylinders, 356, 364, 367–371(figs), 376(fig)

E

Edge delamination, 6, 63

Edge delamination growth
vs load, 275(fig)

Edge delamination layups, 244

Edge delamination tension tests, 274

Edge-notch flexure (ENF) model geometrics, 46

Edge stresses
at low temperatures, 160
thermal/mechanical loads, 150, 152–154, 156–159(figs)

Elastic modulus of composites, 88, 91

Elastic properties

carbon/epoxy, 374, 375(table)
influence on deformations, 70
woven laminates at low temperatures, 154–155

Elastic thermal properties, 151(table)

Elevated temperature, testing, 317

ELS (See End-loaded split laminate)

ENC (See End-notched cantilever beam)
End-loaded split laminate (ELS) test, 202
End-notched cantilever beam (ENCB) tests
End-notched flexure (ENF) test
Static ENF data, 239-241
Energy conservation equation, 182
Energy release rate—crack extension, 205
ENF (See End-notched flexure)
Environmental conditions
Environmental effects, 29
Environmental fatigue loading, 43
Environmental loading standard (ENSTAFF, ENvironmental FALSTAFF), 43
Epoxy-based fiber composites
Impact damage, 356
Epoxy composites
Impact damage, 356
Fatigue cracking, 71
Fatigue crack growth, 162, 169(fig), 172-173(figs)
Fatigue damage degradation rate, 88
Fatigue design load level (FDLL), 40
Fatigue growth law exponent, 163
Fatigue life
Failure, 87, 109-110(figs), 118
Failure analysis
Cylinder laminate, 378, 379(table)
Unidirectional graphite/epoxy, 201
Failure mechanisms (See also Dynamic failure strain)
Delamination, 313, 317
in fiber-reinforced laminated composites, 297
inside surface of tube, 320, 321(fig), 323, 324(figs)
load levels, 320, 322(figs)
radial stress distribution, 320
Failure process in structural materials, 1
FALSTAFF (See Fatigue Loading Standard For Fighter Aircraft)
Fatigue
Composite airframe structure, 29
Composite materials, 66, 222, 241-242(tables), 243
Crack propagation, PEEK, 257(fig)
Damage model and life prediction, 87
cross-ply composite laminates, 19
cycles, power function, 88
glass/epoxy laminates, 270
Graphite fiber composites, 5, 296
Loading, 252, 266-267, 345
Modulus degradation, 89
Smooth and notched composites, 257(fig)
Stress of composites, 345, 353
Testing, 90, 266, 271
Fatigue damage degradation rate, 88
Fatigue damage model, 88
Fatigue delamination, 246
Fatigue design load level (FDLL), 40
Fatigue ENF data, 241-242(tables)
Fatigue growth law exponent, 163
Fatigue life
Composite airframe structure, 29
Composite materials, 87
cross-ply composite laminate predictions, 19, 25-26(figs), 27

F
Fabric prepregs
for Airbus fin box and Tornado composite structures, 34
Fatigue life—Continued

failure criteria, 19
multistress level, 89, 98(table), 100–101(tables)
notched laminates, 79
predictions, 89
single stress level, 89, 98(table), 99(fig, table)
Fatigue life distributions, 87
Fatigue life prediction
equations, 90–93, 94–96(equations, tables)
multistress level, 89–93, 99–101(tables)
single stress level, 87, 89–93
Fatigue load factor, 30(fig)
Fatigue loading conditions
dynamic buckling, 137
Fatigue loading
durability and damage tolerance, predictive methods, 345
ergy release rate, 63
notched laminate delaminations, 48, 58(fig), 60
thermosetting and thermoplastic composites, 252, 266–267,
X-ray radiographs, 49(figs)
FAKing Loading STAnard for Fighter Aircraft (FALSTAFF)
environmental conditions
humidity, 33
temperature, 33
flight load sequences, 33, 36(table)
loading program, 31
Fatigue loads, 34(fig)
Fatigue modulus, 87, 89, 91(fig), 92, 93–97(equations, tables)
Fatigue prediction, 92–97
Fatigue proof testing program, 31
Fatigue response tests
center notched T300//5208 graphite-epoxy composites, 7
secant stiffness measurements, 10
tough matrix composites, 6, 10, 15–18
Fatigue stress
of composites, 345, 353
Fatigue tests
composite materials, 8, 9(table), 42(fig, table), 90, 98(table), 99
crack growth rates, 170
glass/epoxy laminates, 271
graphite fiber composites, 302
interlaminar fracture toughness, 192, 198
list of specimens, 272(table), 279
mixed mode loading, 162, 164
notched CFRP laminates, 46
PEEK, 266
thresholds for composite materials, 228, 242–245
Fatigue tests, PEEK, 266
FDLL (See Fatigue design load level)
Fiber breakage
impact damage in brittle systems, 356
Fiber bridging
glass/epoxy specimen, 255
PEEK, 266
Fiber buckling, 121
Fiber bundle pullout
during fracture process, 192, 195
temperature effects, 193(fig)
Fiber composites
Kevlar/epoxy plates, 387
predictive methods for structural stability and damage tolerance, 338
Fiber damage (See Damage)
Fiber kinking, 135
Fiber-matrix bond strength, 104
Fiber-reinforced composite materials
notched laminates, 66
plastic cross-ply laminates, 103–105
Fiber strain failure, 379(table), 380(table)
Finite element analysis
deformation, 142(fig)
delamination buckling, 141
grids of woven laminates, 153(fig)
ENF specimens, 231, 232–234(figs), 248
grids of woven/nonwoven laminates, 152(fig)
interlaminar fatigue crack growth, 166–167, 168(table)
mode II fracture toughness, 201, 207(fig), 212, 213(fig)
modeling procedures, 138, 139–140(table, figs)
models, 138, 154
woven glass-epoxy laminates, 150
Fiber pullout, 335
Filament-wound composite tubes, 314, 323–325
Finite element analysis
filament-wound composite tubes, 314
glass/epoxy laminates, 280
graphite fiber composites, 302–303
Finite element method
compliance calibration, 258(fig, tables), 259(fig), 260(table), 265(table), 267
Flexural modulus
graphite fiber composites, 300(table)
Flexural residual strength
Kevlar/epoxy plates, 387
thermoplastic composite laminates, 356
Flexural stiffness
 Kevlar/epoxy plates, 387
Flight-by-flight loading sequence, 31
Flight load sequences
 Tornado program, 36(table)
Forced deflection response
 aluminum cylinder, 377, 378(fig, 393
 carbon/epoxy cylinder, 383(fig)
Fractography
 carbon fiber laminates, 182
 epoxy composites, 255
 mode II delamination fracture, 218–219(figs)
Fracture, 137
Fracture characteristics
 composite cylinders, 327
Fracture mechanics
 analysis, 137, 297
 crack propagation, 202
 crack-tip damage, 327, 332–333
 cylinders, 327
 graphite fiber composites, 296
 mixed-mode loading, 163
 model geometrics, 46
 predicting crack growth rates, 162
 stress, 327, 332–333
 thermoplastic composites, 251, 267
 toughness, 297
Fracture modes
 graphite fiber/epoxy laminates, 342(table)
Fracture strain, 108(table), 111(fig), 115
Fracture strength of cylinders, 330–335
Fracture stress
 composite cylinders, 332–333(figs)
 static fracture stresses for tension and compression, 342(fig), 345
Fracture toughness
 composite cylinders, 382
 cyclic delamination growth, 297
 graphite fiber composites, 6
 mixed mode, 245(fig)
 testing—interlaminar, 185–188
 unidirectional graphite/epoxy composites, 201
Free-edge delamination growth, 271, 274
Friction, 230
Fringe patterns
 in orthotropic laminate, 76
 in quasi-isotropic laminate, 77

G
Gas gun, 388(fig)
Geometrics—woven/nonwoven laminates, 154(fig), 160
GFRP (See Glass fiber-reinforced plastics)
Glass/epoxy
 delamination, 252, 387
 effects of environmental conditions, 274(fig), 276(fig), 277
 free-edge delamination, 270
 mechanical properties of woven materials, 150
 shear fracture toughness, 222
 unidirectional material properties, 273(table)
Glass fiber-reinforced plastics (GFRP), 104
Graphite/epoxy
 compression failures, 118
 cross-ply laminates
 fatigue evaluation, 29
 fatigue life prediction, 19, 20(fig), 26(fig)
 stress-life curve, 23(fig), 24–25(figs)
 delamination damage, 387
 matrix toughness effect, 298
 mode II delamination, 201
 notched laminates, 67, 69
 shear fracture toughness, 222
 thermosetting and thermoplastic composites, 252
Graphite fiber composites
 fatigue response, 10, 14, 15–18
 matrix toughness, 296
Graphite fiber notched laminates, 45
Graphite polyetheretherketone composites (PEEK)
 compression failures, 118
 crack propagation, 256–257(figs)
 fatigue, 6
 fatigue crack propagation 257(fig)
 material behavior, 266–267
 thermoplastic-based composite, 356
Graphite epoxy composites, 6
Grid geometry, 154
Growth rate, 162
Growth model, 270

H
Hackle orientation, 217, 219, 220
High temperature
 effects on epoxy resin matrix material, 29
High strain-to-failure (tough) matrix systems
 effect on delamination, 326
High-velocity impact
 dynamic failure strain, 369
Hygrothermomechanical cyclic loading, 352(fig), 353
Impact damage
composite cylinders, 373
fiber composites, 387
in brittle bismaleimides and thermoplastic composite systems, 356
Impact damage characteristics
bismaleimides and brittle thermoplastics: delamination, fiber breakage and matrix cracks, 358
size effect using plate panels, 363
Impact damage resistance, 363
high-velocity impact damage, 369
Impact data
discussion, 394–395
tables (appendix), 402–404
Impact delamination
graphite/epoxy, 402
Impact energy
absorption, 395
carbon/epoxy cylinders, 373–381
effect on delamination, 380, 381(fig)
Impact forces, 6, 137
Impact-induced dynamic buckling, 137
Impact loading and unloading
dynamic delamination buckling, 137
high-velocity, 368, 371(fig)
low-velocity, 368–371(figs)
Impact resistance
predicting composite damage, 347(fig)
properties of composite laminates, 364(fig)
Impact specimens
bending stress, 143(fig)
buckled sublamine, 141(fig)
displacement profiles, 144(fig)
geometry and loading, 140(fig)
Impact testing (See also High-velocity impact, Low-velocity impact)
of composite cylinders, 374
PEEK, 359–362(figs), 363
Torlon, 359–362(figs), 363
In-plane stress distribution, 316, 320
In-plane Tsai Hill theory, 323
Interfacial adhesion, 197
Infrared optics
Interface, 103
Interlaminar crack growth behavior
crack tip process zone, 196–197
double cantilever beam (DCB) testing geometry, 195
fracture toughness, 195
PEEK/CF laminate results, 195
unidirectional composites, 192

Interlaminar fatigue
crack growth rates, 162, 190
Interlaminar fracture, 222
Interlaminar fracture tests
double-cantilever-beam (DCB) samples, 182
wedge-driven delamination, 182, 184
Interlaminar fracture toughness
adhesion effects, 197
carbon fiber laminates, 182, 185, 189
environment effect, 275(fig), 278
glass/epoxy laminates, 273
graphite fiber composites, 6, 302(table), 305(table), 308
testing materials and methods, 185–186
Interlaminar shear fracture toughness, 224, 231, 243
Instron type machine, 97
Irwin-Kies compliance method, 264
Isochromatic fringe patterns, 75–78(figs), 81
Isothermal deformation, 184

K
Kevlar/epoxy plate
deflection, 393
delamination damage, 387, 392(fig)
multiple-ply laminates, 390, 392(fig)
Kinetic energy
Kevlar/epoxy laminates, 389, 394(fig), 396(fig)
Kevlar/epoxy stiffness and strength retention, 399(figs)
graphite/epoxy laminates, 395(fig), 396(fig)
graphite/epoxy stiffness and strength retention, 398(fig)
Kevlar epoxy specimens, 321(table) 322–324(figs)
Kinking of damaged fibers, 135

L
Lamina properties
predictive model for damage, 19
Laminate defects, 341, 344(fig), 345
Laminate static fracture data, 340(fig)
Life, 5
Linear beam theory, 204, 207, 229
Linear elastic fracture mechanics, 163, 204, 207
Linear failure criterion
for delamination, 246
Linear finite element analysis, 166–168
Linear laminate theory, 26, 341
Linear load displacement behavior, 243
Linear regression analysis of compliance calibration data, 236(fig)
Load-bearing structural components, 66
Load-carrying capability
postimpact unloading tests, 363
Load deflection curves, 209, 211(figs)
Load displacement data
graphite/epoxy composites, 212
interlaminar shear fracture toughness, 228(fig), 231, 240, 248
open hole composites, 126–127(figs)
thermosetting and thermoplastic composites, 260(fig), 267
Load-induced crack closure, 162
Load levels for composite airframe structures, 40
Load, mechanical
fatigue and fracture, 345, 346(fig)
Load redistribution, 81
Loading
carbon epoxy cylinders, 380
graphite/epoxy composites, 212
geometry of cylinder, 376, 377(fig)
lateral of cylinders, 384
Loading conditions
crack growth rates, 162
fatigue and matrix toughness, 6
glass/epoxy laminates, 271
graphite fiber composites, 297, 301
predictive methods for durability and damage tolerance, 352(fig), 353
Loading impact, 137
Loading programs
evaluation of airframe structure, 31, 35
fatigue and fracture, 346
mechanical, cycling, 352
Low load fatigue tests, 46
Low temperatures, 150, 159, 160
Low velocity impact damage
bismaleimides and thermoplastic composite, 356, 364(fig), 367–371(figs)
composite cylinders, 356
delamination, 388–390
in brittle composite systems, 356
Kevlon/epoxy plates, 389
Materials
failures in open-hole composite laminates, 122
Matrix cracking
bismaleimides and thermoplastic laminates, 356, 367
in impacted glass/epoxy plates, 394
Matrix cracking in notched laminates
fatigue damage development, 45, 49–50(figs), 59(fig), 65
fatigue damage growth, 71
fatigue damage initiation, 71(fig), 72(fig)
Matrix cracks, 19–20, 29–30, 356
Matrix deformation during compressive loading, 135
Matrix failures, 19
Matrix fracture strain, 115
Matrix plasticization, 336
Matrix splitting, 335
Matrix toughness, 5–18, 296, 298
Mechanical and thermal loads
stress distribution, 156
Mechanical loading (See Loading programs)
Mechanical tests
method for reversed cyclic loading, 6
Methodology and materials
interlaminar fracture toughness testing, 185–186, 187(fig)
Microcracks, 216, 217, 266, 348
Micrograph studies, 129–131(figs)
Midplane displacement, 141, 143–144(figs)
Midplane stress distribution, 156(fig), 159(fig)
Midplane stresses
at low temperatures, 159, 160
woven and nonwoven glass-epoxy, 152
Mixed mode
cyclic delamination growth rate, 305(table)
delamination growth rates, 306(fig)
edge delamination tension tests, 244
failure criterion, 248
fracture toughness, 245(fig)
interlaminar fatigue, 162, 164–165(figs)
tests, 254
delamination initiation, 264
linear elastic fracture, 264
strain energy release rate, 264
stress intensity factors, 264
Mode I
delamination, 266–267
double cantilever beam specimens, 252
double cantilever beam test, 212
fatigue tests, 253, 256, 257(fig)
fracture energies, 255(table), 267
graphite/PEEK crack length, 256(fig)

M

Macroscopic compression behavior, 125
Mar-Lin equation
prediction of failure to pressurized cylinders, 331–334
Material properties
carbon/epoxy cylinders, 375(fig)
Mode I—Continued
static, 255
test methodology, 252

Mode II
delamination, 215(fig), 217(fig)
delamination growth rates, 307(fig)
fatigue tests, 254
fractography, 218–219(figs)
graphite/epoxy composites, 266–267
loading, 203
shear delamination tests, 253
shear fracture toughness, 222
static, 255, 256
strain energy release rate, 235(fig)
test configuration, 202(fig)
test methodology, 252, 254

Mode III
tearing, 297
Model geometrics, 46
Modulus degradation, 87
Moisture, 31, 45
Monotonic loading conditions, 6

N

NASTRAN DMAP, 138, 139(table)
NDE (See Nondestructive examination)
Neat resin tensile properties, 320
Newman’s analysis for cracks, 121(fig)
Nondestructive examination(NDE), 132–133
Nondestructive evaluation, 7, 66
Nonlinear behavior, 231
Nonwoven laminates—damage, 150
Notched strength, 326

O

Open hole composite laminates, 118
compression failures of materials, 122
compression strengths, 126(table)
load displacement data, 126–127(figs)
Orthotropic behavior, 316
Orthotropic specimens
isochromatic fringe patterns, 78
photoelastic coatings, 74–77(figs)
residual and compressive strength, 81
tensile and compressive strengths, 73(fig), 74(fig)
Out-of-plane displacements, 171, 172(figs)
Overload, 45

P

PEEK (See Polyetheretherketone)
Photoelastic coating technique, 81
Photoelasticity
coatings, 68, 69, 75(fig)
Plane strain problem, 151
Plane stress analysis, 234
Plasticization, 335
Plastics, fiber reinforced, 103–105
Ply stresses, 341
Polyetheretherketone (PEEK) laminates
brittle bismaleimides, 356–357
compressive strength test results, 13(table)
Imperial chemical industries—America
system, 185
interlaminar fracture toughness, 190
material description, 357(tables)
matrix fracture strain, 115
matrix toughness, 300
residual strength test results, 13(table), 14(fig)
shear fracture toughness, 222
stiffness curves, low cyclic stresses vs high
cyclic stresses, 14
stiffness ratio vs normalized life plots, 10–11, 12(figs)
test methods, 6
thermoplastic-based systems, 356, 357(tables)
thermoplastic composite laminates, 356–357(tables)
Torlon composites, 357(tables)
Victrex PEEK, 122
Postimpact delamination
Kevlar plate, 388, 390, 391(fig)
unloading tests, 363, 367–368
Precracking test procedures, 226, 227(fig)
Predictive methods and models
for structural durability and damage toler-
erance of composites, 339–355
Prepreg materials, 34
Pressure load—radial, 376
Pressure vessels
potential for impact damage, 373
strength loss due to impact, 374
Pressurization
test procedure for cylinders, 328–331
Pressurized cylinders, 326

Q

Quasi-isotropic construction of laminates, 356
Quasistatic specimens
photoelastic coatings, 75(fig)
isochromatic fringe measurements, 75, 76–77(figs)
residual and compressive strength, 81
tensile and compressive stiffness, 70, 71 (fig), 74(fig)
thermography, 78(fig)

R
Radial pressure load, 376
Radial stress distribution, 318, 319(figs), 320, 321(tables), 322–323(figs)
Radiography, 67, 71–72(figs)
Rebound kinetic energy, 389
Refraction index of photoelastic coating materials, 68
Residual load resistance
 bend test, 364
 vs impact velocity, 363
Residual properties, center-notched laminates, 73(table), 80
Residual static tests, 229, 240–241(tables), 243(figs), 245(fig), 247
Residual strength
 bend test, 364
 composite airframe structure, 29–30, 42
 composite cylinders, 373
 degradation model, 87
 impact resistance, 356
 nonlinear equation, 87
 notched laminates under reversed cyclic loading, 66, 80
 tests, 31
Residual toughness tests, 241
Reversed cyclic loading, 6, 67
Rocket motor cases
 impact tests of cylinders to simulate actual service conditions, 374
Rotations, 376

S
SBS (See Short beam shear)
Scanning electron micrographs, shear, 194(fig), 208
Secant modulus failure criterion, 88(fig)
Secant stiffness measurements, phases
 normalized life, 10
 normalized stiffness, 10
 notched laminates, load cycle, 70(table)
 tension-compression-stiffness-versus-life, 10(fig)
Sectioning studies, 125(table), 127
Sectioning studies—specimen micrographs, 130–131(figs)
Servohydraulic test machine, 271
Shear crippling, 121, 127, 131–132(fig)
Shear deformation, 76, 121
Shear fatigue thresholds, 224
Shear lag analysis, 106(fig), 107
Shear strength, 222
Shear stress, 107, 201
Short beam shear (SBS) test, 224
Simplistic loading
 Tornado program, 31
SPATE (See Stress pattern analysis by measurement of thermal emission)
Specimen geometry
 composite materials, 7(fig)
 notched laminates, 47(fig)
Stacking sequence
 effect on interlaminar fracture, 279
 effects, delamination failure modes, 313, 317(table), 321(fig)
 on laminated Kevlar/epoxy plates, 388
Static-edge delamination growth
 vs load, 275(fig)
Static force deflection, 376(fig)
Static indentation data, 366–371(figs)
Static linear model
 impact response for empty cylinders, 375
Static loading
 delamination
 buckling, 146
 notched laminates, 48, 63
 X-ray radiographs, 49(figs)
 energy release rate, 63
 shear fracture toughness, 244
Static shear delamination, 227(fig)
Static shear precrack, 227(fig)
Static tension, 8
Static testing, 90
Static tests
 interlaminar fracture toughness, 302 (table), 306
 interlaminar shear fracture toughness, 228–229, 239, 240–241(tables), 243, 247
 mode II, 256
 specimens, 271(table)
Stereomicroscope, 123(fig)
Stick/slip crack growth, 181, 199
Stiffness
 composite cylinders, 375–376
 composite laminates, 7, 11(fig)
 degradation, 81
 fatigue damage in notched laminates, 45, 47, 57–59(figs), 67
 fiber-reinforced plastic cross-ply laminates, 103
 Kevlar/epoxy plates, 388, 397
Stiffness—Continued
notched laminates—tensile and compressive strengths, 70(tables), 73(table), 74(fig, table)
Stiffness degradation, 19, 81, 401
Stiffness matrix, 316
Strain, 87
Strain distribution, 66, 75, 80–81
Strain energy release rate
composite cylinders, 382
crack-lap-shear (CLS) specimens, 300(fig), 303
cyclic delamination behavior, 304(fig), 307
delamination buckling, 146–147(figs)
delamination fracture testing, 203
graphite fiber composites, 6
interlaminar fatigue crack growth, 162, 163, 168(table), 169
interlaminar fracture toughness, 181
mixed mode tests, 264, 265(table)
mode I and mode II
delamination of thermoplastic composites, 257, 260
graphite fiber composites, 296
mode II ENF test, 235(fig)
notched laminates, 45, 46
shear fracture toughness, 212, 224, 229
Strain failure criterion, 88, 89(fig), 93
Strain magnification, 103, 104(fig)
Strain measurement techniques, 67–68
Strain response (See Dynamic strain)
Strength-to-failure matrix system, 336
Strength
airframe structures, 31
degradation rate, 88
graphite fiber composite laminates, 5
notched laminates, 70(tables), 73–81(figs, tables)
Strength and stiffness reduction
glass/epoxy plates vs delaminated area, 400(fig, table)
pressure vessels, 374
Strength and stiffness retention, 388, 397
Strength distribution, 106, 115
Stress
bending, 141
composite materials, 87
crack density, 22
crack growth rate, 51–53, 62, 63
cross-ply laminates, 20–27
distribution, 80, 106–107
notched laminates, 67
temperature effects, 29
Stress concentration equations, 343, 344(fig)
Stress concentration factors, 341
Stress criterion
effect on fatigue endurance, 346(fig)
Mar-Lin vs Whitney-Nuismer, 332–335
material comparisons, 335(table)
Stress distribution
ahead of crack tip
mode I conditions, 212, 213(fig)
mode II conditions, 214(fig)
graphite/epoxy composites, 207
woven laminates, 154–155, 156–159(figs)
Stress intensity factors, 162
Stress levels
cyclic, 20(fig)
Stress-life properties (S-N curves), 19, 24–27(figs)
Stress pattern analysis by measurement of thermal emission (SPATE), 68–69
Stress prediction, 316, 320, 323
Stress/strain
during cyclic loading, 66, 91
failure criterion, 89(fig)
secant modulus failure criterion, 88(fig)
SPATE 8000 (Stress pattern analysis by measurement of thermal emission) instrument, 68–69
Structural components
under long-term cyclic loading, 66
Structural degradation of impacted plates, 397
Structural durability of fiber composites in aerospace environments, 339
Stuers accutum precision saw, 125
Subperforation speeds (See Low-impact delamination damage)

T
Temperature
effect on epoxy resin matrix material, 29
loading programs, 31
Temperature and loads—sequences, 34(fig)
Temperature dependence
fracture toughness testing, 189(figs), 199
Temperature linked with deformations of elastic matter, 68–69
Temperature profiles
flight load sequences, 36(table)
Temperature tests
delamination failure modes, 313, 317
(table), 318–319(figs), 320
tensile and compressive strengths, 70
(tables), 73, 74(fig, table)
Tensile delamination stresses, 159, 201
Tensile forces, 5
Tensile fracture process, 81
Tensile properties, neat resin of epoxy resin system, 320
Tensile static tests on notched CFRP laminates, 46
Tensile strength
use to predict transverse fiber pullout, 324
Tension, 239
Tension-compression cyclic loading
tests to identify damage and failure, 6
Tension tests
edge delamination, 274
Test methods for Mode I
double cantilever beam test, 6
edge delamination test, 6
Test methods
compression tests for open-hole composite laminates, 123
response of composite materials, 87
under reversed cyclic loads, 7, 67
Test procedures
cylinders, 328–331
Tornado program, 37(fig)
Testing
interlaminar fracture toughness materials
and methods, 185–186
shear fracture toughness, 226
Tests
crack growth rate/stress range, 51
Thermal cracks, 29–30
Thermal cycles
predictions for laminates, 348, 350(table)
to failure, 351(figs)
to initial transply cracking, 350(table)
Thermal cyclic loading, 352
Thermal cycling, 29
Thermal emission, 68, 78–79(figs), 81
Thermal expansion coefficients, 107
Thermal fatigue, 348
Thermal loading (See Loading programs)
Thermal loads—stress distribution, 156, 157(figs)
Thermal ply transverse stress
at cryogenic temperatures, 349
Thermal strain, 109, 113(fig)
Thermally induced stress
combined with magnetic loads, 150, 156
Thermography, 78(fig), 80
Thermoplastic-based composites
PEEK, 356, 357(tables), 372
Torlon, 356, 357(tables), 372
Thermoplastic resin composites
vs thermoset resin in interlaminar fracture testing, 198
Thermoplastics, 5
Thin-walled composite tubes
interlaminar stresses, 315
loading, 314
stresses and strains, 315
Tinius Olsen servohydraulic test machine, 271
Torlon
impact damage, 356, 357(tables), 358
Tough matrix vs brittle matrix materials
impact resistance, 364
Toughened BMI matrixes, 356, 357(tables)
PEEK, 358, 360(figs)
Transverse shear stress, 367, 376
Tornado program
candidate material systems, 34, 35(fig)
environment effect
on life, 39(fig)
on residual strength, 38(fig)
fatigue design load levels, 41(table)
quasirealistic loading, 33, 41(table)
simplistic loading, 31, 41(table)
temperature profile and flight load sequences, 36(table)
test setup, 35
wing loading sequence, 31
Tough matrix systems
cyclic delamination growth, 300
pressurized composite cylinders, 326
resistant to lamination driven fracture, 17
tests to identify behavior, 6
Transply cracking, 348
Transverse cracking
carbon fiber-reinforced plastics, 105, 111
fatigue life of composite materials, 19, 20(fig), 27
Transverse fiber pullout, 314, 320, 321(table), 322(figs), 324
Transverse fracture strain, 115
Transverse matrix cracking, 320, 323
Transverse shear, 230, 238–239
Transverse shear stress, 367, 376
Transverse strength
fiber-reinforced plastics, 103–104, 105, 112
Tsai-Hill theory
in-plane stress prediction, 316, 320, 323
U
Unidirectional carbon tape, 185
Unidirectional composite materials
delamination, 252
glass epoxy, 273(table)
Unidirectional composite materials—Continued
interlaminar fracture toughness, 273
material properties, glass/epoxy, 273(table)
mechanical properties, 273
Unidirectional graphite/epoxy composite
delamination on fracture toughness, 201–221

V
Velocity measuring system, 388(fig)
Voids, 114–115

W
WDD (See Wedge driven delamination)
Wedge-driven delamination
carbon fiber composites, 182

PEEK/CF interlaminar fracture data, 190–191(figs), 199
testing design, 182, 183(fig)
testing materials and methods, 185–189
Whitney-Nuismer average stress criterion
correlations for strength of notched
coupons, 332–334
Woven composites, 150
Weibull distribution
fatigue evaluation, 40
fracture strain distribution, 110–111(figs),
112–113(figs), 116(fig)
transverse cracking, 103, 105, 108(table),
109(fig)
Wild M8 zoom stereomicroscope, 123(fig)
Wing loading sequence (FALSTAFF), 31

X
X-ray radiography, 67, 73, 81