Subject Index

A
Absorbed energy, 93
Alloy 718, 321
Aluminum alloy composites, 234
Annealing effects, 455
ASTM Committee E08, 251
ASTM standards
 A 508, 107
 A 533, 48, 80, 350
 E 1253-88, 438
 E 1921-97, 18
 E 8, 251
Axial specimens, 195

B
Bainite, 380
Ball indentation simulations, 306
Bar specimens
 cracked round, 3
 notched, 321
Bend specimens, subsized, 67
Beremin cleavage model, 107
Brittle fracture, 18, 33

C
Carbon dioxide laser welding, 464
Centre-cracked tension specimens, 80
Ceramic matrix composites, 294
Charpy-V specimens, 409
 impact properties, 137
 impact testing, 464
 instrumented impact test, 137
 miniature, 18
 precracked, 67, 426
 precracked miniature, 3
 reconstituted, 426, 464, 477
 subsized, 107, 137
 subsized, notch test, 93
Chromium-molybdenum steel, 321, 380
CH-V, 438
Circumferentially cracked bars (CCB), 80
Cleavage, 33
 failure, 107
 fracture region, 93
 model, Beremin, 107
Compact tension specimens, 48
Compliance, 339
Composites, 294
Cone indentation tests, 306
Constitutive
 equation, 93
 law, 221, 306
Constraint, 67, 80
 loss of, 3
Coolant loss, 195
Correlation, 137, 380
Crack extension, 48
Crack growth, 321
Crack length, 67
Crack propagation, 211
Crack tip constraint, 80
Crosshead displacement, 339
Cyclic softening, 181

D
Defect flux, 211
Deformation
 cyclic, 181
 maps, 283
 mechanisms, 267
 microstructures, 267
 rate, 234
Disk bend test, 267
Dislocation obstacles, 221
Ductile fracture, 33
Ductile-to-brittle transition regime, 3
 temperature (DBTT), 137, 151
Dynamic impact test, 107
Dynamic oscillations, 67

E
18MND5 steel, 464
Elastic-plastic behavior estimation, 350
Elastic-plastic temperature range, 18
Electrochemical polishing, 267
Electrochemical thinning, 283
Electron beam welding, 409, 426, 438
ElectroThermoMechanical test (ETMT), 234
Embrittlement, 93, 107, 137, 151
Extensometers, 234

Fatigue
- crack growth, 321
- precracking, 80
- properties, 181
- response, 211
- test, 181

Ferritic/martensitic steel, 93
Ferritic steel, 33, 107, 211, 380
Fiber strength, 294
Finite element analysis, 80, 195, 339
- loss of constraint calculation, 3
- method, 306
- modeling, 221
- simulation, 107, 221, 350
- stress state determination, 251
- three-dimensional, 93
Flow localization, 221

Geometrical deviation, 477

Heat affected-zones, 380
Hourglass specimens, 181
Hyperbolic tangent curve, 107

Impact energy, total, 477
Impact specimens, 151
Impact testing, 67, 93, 107, 464
Indentation methods, 306
Initiation toughness, 48, 80

Insert length, 426
International Organization for Standardization
EN ISO 13919-1, 464
Inverse method, 350
Ion-irradiated TEM disks, 267
Irradiation, 137, 409, 438
- effects, 267
- fluence, 455
- hardened metals, 283
- post-irradiation examination, 181
- proton, 211

JR curve, 48
J-integral, 80

Lateral expansion, 477
Load displacement, 80, 221
Loading amplitude, 211
Loading curve, 339
Load penetration curves, 306
Local approach, 33, 107
Low-activation ferritic/martensitic alloy (F82H), 211
Lower shelf
- cleavage, 33
- conditions, 3

Master Curve, 3, 18
Mechanical properties, 195, 211, 283, 380
Microstructure, 181, 267, 321
Miniature specimens, 33, 211
- bar, 3, 321
- Charpy-V, 3, 18
- hourglass, 181
- ring-stretch, 195
- tensile specimen, 294, 371
- tensile strength test system, 234

Models and modeling
- Beremin cleavage, 107
- cleavage fracture, 93
- finite element, 221
- Rousselier porous, 107
Molybdenum foil rings, 283
Molybdenum steel, 321
Multiaxial stress states, 251

N
Nickel alloy, 234
Nimonic 901, 234

O
Offset strain, 339
Optimized insert length, 426

P
Parametric study, 350
Plane-weave, 294
Plasticity theory, 221
Plastic strain
 average, 267
 deformation maps, 283
 surface, 267
Proton irradiation, 211
Punch tip displacement, 339

R
Ramberg-Osgood relation, 350
R-curve, 33
Reactivity-initiated accidents, 195
Reactor Pressure Vessel, (RPV),
 3, 48, 350, 477
 aging phenomena studies, 409
 ductile-brittle transition
 temperature, 151
 embrittlement effects on, 455
 embrittlement surveillance
 program, 107
 fusion reactor, 181
 geometry, 251, 137
 VVER-440, 151
 welding, 464
 WWER 440, 18
Reconstitution, 151, 409, 477
 systems, 438
 technique, 426
 technology, 455, 464
Rectangular dogbone testpiece, 234
RESQUE project, 409, 426, 438, 464, 477
Ring stretch specimens, 195
Rousselier porous model, 107

S
Satin-weave, 294
Scanning electron microscopy, 211
Shear fracture appearance, 477
Shear punch test, 339, 371, 380
Shear ultimate strength, 371
Shear yield strength, 339, 371
Silicon carbide (SiC)
 composites, 294
Single-edge notched bend
 (SEN), 48
16MND5, 107
Slow bend three-point bend
 test, 409
Small punch test, 350
Small specimen test technique
 (SSTT), 181
Steel, 3, 48
 A 533B-1, 48, 80, 350
 chromium-molybdenum, 321, 380
 F82H, 33
 ferritic, 33, 107, 211, 380
 ferritic/martensitic, 181
 ion-irradiated, 267
 low alloy, 455
 molybdenum, 321
 304L, 321
Strain
 energy density, 350
 hardening, 221, 306
 localization, 283
 rates, 195
 softening, 221
Stress-critical area criteria, 93
Stress state point plots, 251
Stress strain
 characteristics, 234
 constitutive laws, 221
 relation, 350
 response, 195, 251
Stud welding, 409, 426, 438, 477
Subsize specimens, 137, 321
 bend specimens, 67
 Charpy-V, 93, 107, 137
<table>
<thead>
<tr>
<th>Impact bend specimens, 151</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM pieces, 283</td>
<td>Uniform elongation, 371</td>
</tr>
<tr>
<td>Surveillance program, 18, 107, 137</td>
<td></td>
</tr>
<tr>
<td>Tearing resistance, 48</td>
<td>Upper shelf ductile R-curve, 33</td>
</tr>
<tr>
<td>Temperature measurement, 409</td>
<td></td>
</tr>
<tr>
<td>Templets, 151</td>
<td>Upper shelf energy (USE), 137, 426</td>
</tr>
<tr>
<td>Tensile</td>
<td>V</td>
</tr>
<tr>
<td>properties, 321, 380</td>
<td>VVER-440 reactors, 151</td>
</tr>
<tr>
<td>strength, 294</td>
<td>W</td>
</tr>
<tr>
<td>strength measurement system, 234</td>
<td></td>
</tr>
<tr>
<td>test, 93, 221, 251, 371</td>
<td>Welding, 464</td>
</tr>
<tr>
<td>test cradle, 283</td>
<td>Welds, 380</td>
</tr>
<tr>
<td>test jig, 283</td>
<td>characteristics, 151</td>
</tr>
<tr>
<td>304L steels, 321</td>
<td>Work hardening, 339</td>
</tr>
<tr>
<td>316LN stainless steel, 267</td>
<td>WWER 440, 18</td>
</tr>
<tr>
<td>Three-point bending, 321, 464</td>
<td></td>
</tr>
<tr>
<td>specimens, 18, 33, 80, 321, 409, 464</td>
<td></td>
</tr>
<tr>
<td>Transition region, 3, 33, 426</td>
<td></td>
</tr>
<tr>
<td>Transition temperature, 18, 438, 477</td>
<td></td>
</tr>
<tr>
<td>Transmission electron microscopy (TEM), 267, 283</td>
<td></td>
</tr>
<tr>
<td>T₀ determination, 426</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Yield load, 477</td>
</tr>
<tr>
<td></td>
<td>Yield strength, 339, 350, 371</td>
</tr>
<tr>
<td></td>
<td>Yield stress, 221</td>
</tr>
<tr>
<td></td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>Zircaloy cladding, 195</td>
</tr>
</tbody>
</table>