Subject Index

A

Subject Index
Abrasive wear, 362, 375
Acid solution, extraction of, 148
Adhesive resistance, 349
Adhesive wear, 375
Aerospace applications, 362, 375, 386
Aluminum, 297
American Iron and Steel Institute
440C, 414
Antifriction bearings, 47
ASTM standards
A 295, 113
A 295 52100, 27, 113, 330
Austenite, retained, 320, 330, 399
control, 309
heat treatment generation,
244
life extension relationship,
285, 297
Automotive applications, 164, 285

B

Bend fracture strength, 349
Bending strength, rotating, 3
Boundary lubrication, 226

C

Carbide, 309, 349, 459
banding, 27
coarse eutectic, 414
Carbon, 414, 427
Carbon alloy, high, 27
Carbomtride, 309
Carbonitridding bearing steel, 297
Carbon reduction, 3, 27
Carburized layer, 427
Carburizing, 330, 399, 459
stainless steel, 362, 375
Case hardenable steels, 244
Casting techniques, 164
Ceramic ball hybrid bearings, 349
Chip formation, 71
Chromium, 349, 399, 414
chromium-molybdenum steel,
113
reduction, 3
Cleanliness, 138, 176, 226, 443, 509
assessment, internal, 101
improvement, 263
macro-cleanliness, 164
ultra clean steel, 47
Contact stress, uniform, 330
Continuous casting, 3, 27, 309
Corrosion resistance, 349, 362, 375, 414
Coulter counter method, 148
Cracks, 197, 213
microcracks, 297
nucleation, 493
propagation, 443, 493
Cromdur 30, 362, 375
CSS-42L, 362, 375
Cutting forces, 71

D

Damage
mechanisms, 197, 244
surface, 320, 330
surface initiated, 263
Debris denting, 330
Defects, 164
Dents
effects, 244
raceway, 263
Dimensional stability, 244
Distortion, 86
Duplex hardening, 386
Dynamic capacity, 213

E

Elastic modulus, 427
Elastohydrodynamic film
parameter (lambda), 226
Elastoplastic properties, 427
530 BEARING STEEL TECHNOLOGY

Endurance limit, 459
Environmental issues, 86
ES1 steel, 414
Evaluation program, bearing steel, 138
Extraction, 148, 176

F
Fatigue endurance, 101
Fatigue failure, 125, 148
ultra-long, 113
Fatigue life, 113, 309, 414, 493
carbonitrided bearing, 297
characteristics, 349
distribution, 197
extension, 285, 459
nonmetallic inclusion
evaluation, 148
prediction, 474
testing, 138, 226, 244, 375
testing, duplex hardened components, 386
Fatigue limit, 101
stress, 474
Fatigue, spalling, 443
Fatigue strength, 113, 176
Fatigue tests, 263, 330, 509
flat washer, 493
d life tests, 138, 226, 244, 375
Finite element method, 427
52100, 3, 349, 375, 474
5280, 3
Flaking, 226
surface originated, 213
Fracture
delayed, 226
reverse, 226
test, 138
toughness, 362

G
Generalized Pareto distribution, 125
German standard, 164
German steel industry, 164
Grain boundary, 226
Grain growth inhibition, 27
Grain size, 297
Grinding, 86
Groove formation, 509

H
Hardening, 47
distortion, 86
duplex, 386
strain, 427
Hardness, 3, 309, 414
hot, 349, 362, 375, 399
micro-hardness, 297
recovery, 362
surface, 386
Heat treatment, 113, 399, 474
applied, 443
carbonitriding, 297
characteristics for life
extension, 285, 309
optimization, 244
performance, 330
property development, 27
quenching, 86
response, 3
Hertzian stress, 47
High speed steels, 399
Hoop stress, 459
Hydrogen, 113
embrittlement, 226

I
Image analysis, 176
Immersion tests
tap water, 414
ultrasonic testing, 164
Impact bending, 3
Impact toughness, 349
Inclusion, 113, 459, 493
micro-inclusion, 509
nonmetallic, 101, 164, 226, 459
elastic modulus, 427
evaluation method, 148, 176
hard, 47
hydrogen trapping, 113
spalling effects on, 320
population, 493
ratings, 125
size prediction, 125
size ratings, 509
Indentation, 197, 263, 427
simulation, foreign particle, 244
Ingot size, 27
Inhomo~eneity, 459
International Organization for
Standardization (ISO)
ISO 3685, 71

KE bearings, 285

Light interferometry, 330
Load, equivalent bearing, 213
Loading, 125, 197, 320, 349
applied, 493
Local stress, 213
Lubrication, 474
contaminated, 244, 263, 309,
320
life estimation under, 213,
297
film, 330
water-infiltrated, 226, 309
Lundberg-Palmgren
bearing life theory, 213
life equations, 474

Machinability, 71
Machining, hard, 86
Manganese increase, 3
Martensitic stainless steel, 414
Material optimization, 244
Mechanical properties, chemical
composition effects, 297
Metallography, quantitative, 101
Metal particles, hard powder, 330
Metal shaping, 474
M50, 349, 375, 386, 399
Microhardness, 297
Microplasticity, 427
Microscopic image analysis, 176
Microscopy, 138
Microstructural change, 443
Microstructural optimization, 244
Microstructural stability, 443
Microstructure, 3, 330
chemical composition
effects, 297
Micro-yield shear, 459
Micro-yield stress, 427
M1, 399
Modeling, 197
bearing fatigue life, 509
endurance limit, 459
fatigue life distribution, 197
statistical, 493
Molybdenum, 113, 399
M2, 399

Nano-indentation
measurements, 427
Nickel, 226, 297
Nitrided layer, 427
Nitrided steel, 362, 459
Nitrogen, 414
Noise level measuring test, 414
Nondestructive testing, 125
Nonmetallic inclusions, 101,
164, 226, 459
elastic modulus, 427
evaluation method, 148, 176
hard, 47
hydrogen trapping, 113
spalling effects on, 320
Notch effects, 244
Notch impact strength, 3

Oil lubrication life test, 414
Optical emission spectroscopy,
101
Optically dark area, 113
Oxygen, 47
analysis, 138
content, 176

Particle indentation simulation,
foreign, 244
Particle metallurgy, 349
Peeling, 226
Plastic deformation, 244
Process evaluation, 138
532 BEARING STEEL TECHNOLOGY

Producing costs, 414	Stress-life method, 474
Pyrowear 675, 362	Stress, local, 213
Quenching, 3, 86, 113	Stress, micro-yield, 427
Railway, 164	Stress, residual, 386, 399
Reduction ratio, 27	Sulphur reduction, 27
Rig testing, 386	Supplier evaluation techniques, 138
Roughness, 197	Surface dents, 263

<p>| Saltwater spray test, 414 | Surface hardened steel, 427, 459 |
| Sample preparation | Surface hardness, 386 |
| requirements, 138 | Surface initiated damage, 263 |
| SCM435, 113 | Surface integrity, 71 |
| SEP 1927, 164 | Teeming/casting temperature, 27 |
| Slag refining, 148 | Temperature resistance, 285 |
| Sliding wear, 386 | Tempering stability, 320 |
| Soaking time, 27 | Tensile strength, 3 |
| Society of Automotive Engineers | Tension-compression fatigue tests, 113 |
| (SAE) | Test lives, 213 |
| SAE 5140H, 297 | Thermal-induced transformation, 244 |
| SAE 52100, 3, 176, 309, 320 | 32CDV13, 362 |
| comparison with CSS-42L, 375 | Through-hardened steel, 459 |
| fatigue failure, 113 | Titanium, 47 |
| Society of Tribologists and | Tool life, 71 |
| Lubrication Engineers | Tool steel, 349 |
| (STLE), 474 | Tungsten, 399 |
| Sodium chloride immersion | Turning test, single point, 71 |
| test, 414 | Ultrasonic testing, 47, 138 |
| Softening, 443 | cleanliness level characterization, 101 |
| Solidification, 27 | higher frequency method, 176 |
| Spalling, 493 | immersion, 164 |
| fatigue, 443 | nonmetallic inclusion evaluation, 148 |
| Spectroscopy | |</p>
<table>
<thead>
<tr>
<th>Wear resistance, 3, 27, 309, 349</th>
<th>Weibull distributions, 386, 493</th>
</tr>
</thead>
<tbody>
<tr>
<td>aerospace applications, 386</td>
<td></td>
</tr>
<tr>
<td>Cronidur 30, 362</td>
<td></td>
</tr>
<tr>
<td>CSS-42L, 362, 375</td>
<td>X</td>
</tr>
<tr>
<td>nitrided steel, 362</td>
<td>XD15NW, 362</td>
</tr>
<tr>
<td>Pyrowear 675, 362</td>
<td>X-ray diffraction analysis, 443</td>
</tr>
<tr>
<td>XD15NW, 362</td>
<td></td>
</tr>
</tbody>
</table>