Subject Index

A

AFGROW, 154
AFNOR, 24
Airbus, 127
Aircraft, 53, 99, 113, 127, 140, 171, 232,
251, 521
Aluminum alloy, 81, 186, 278, 299, 320,
468, 482
Angle-ply laminates, 408
ANSI, 24
ASTM, 24
ASTM E 647, 36
Automation, 53
Automobiles, 349, 395, 381, 557

B

Bauschinger effect, 453
"Beat like" load, 67
Bending, 567
Biaxial loading, 505
Biaxial stress, 544
Biaxial Test Facility, 557
Block fatigue, 408
Buffet, 113

C

Carbon fiber reinforced epoxy, 408
CARLOS, 395
Cast iron, 567
nodular, 215
CFRP, 408
Classification rules, 535
Cold expansion, 171
Complex stress fields, 335
Compounding method, 521
Compression, 278
Compressive underloads, 154
Constant amplitude, 24
Constraint, 232, 278
Corner notch, 81
Correlation factor, 567
Coupons, 171
Crack closure, 154, 215, 232, 278, 299,
320, 482
plasticity-induced, 453
Crack front incompatibility, 299
Crack initiation, 186, 492
Crack propagation rate, 482

D

Crack simulation, 435
Cycle counting, 381

Damage
accumulation, 3, 395
summation, 369, 381
tolerance, 127
Degradation, 408
Delay, induced by overload, 468
Digital signal processing, 53
Direct current potential crop calibration, 81

E

ECISS, 24
Elastic-plastic stress-strain response
algorithm, 251
Electromagnetic test facility, 67
Endurance limit, 24
Engine fan blades, 200
Environment, 468
Epoxy, carbon fiber reinforced, 408
Equivalent amplitude, 200
ESIS, 24
Eurocycle load program, 557
Experimental proof, 3
Experimental spectrum tests, 3
Extra-hardening, 505

F

FALSTAFF, 53
Fasteners, fatigue-resistant, 171
FASTRAN, 140, 154, 232, 278
Fatigue, 171
Fatigue crack growth, 53, 81, 154, 232,
251, 278, 299, 320, 369, 420, 453,
468, 492
testing, 36
Fatigue crack nucleation, 395
Fatigue design, 420
Fatigue life, 186
assessment, 3
Fatigue testing, 36, 300
full-scale, 99
FEM analysis, 453
First order reliability method, 521
Flight spectrum loading, 278
Fractography, 154
<table>
<thead>
<tr>
<th>Key</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture mechanics</td>
<td>186, 232, 278</td>
</tr>
<tr>
<td>Full-scale testing</td>
<td>113</td>
</tr>
<tr>
<td>Fuzzy modeling</td>
<td>521</td>
</tr>
<tr>
<td>G</td>
<td>Gassner-lines</td>
</tr>
<tr>
<td></td>
<td>Green's function</td>
</tr>
<tr>
<td>H</td>
<td>High cycle fatigue</td>
</tr>
<tr>
<td></td>
<td>ISO</td>
</tr>
<tr>
<td>L</td>
<td>Life improvement</td>
</tr>
<tr>
<td></td>
<td>Life prediction</td>
</tr>
<tr>
<td></td>
<td>Load interaction</td>
</tr>
<tr>
<td></td>
<td>Load spectrum</td>
</tr>
<tr>
<td></td>
<td>Load time history</td>
</tr>
<tr>
<td></td>
<td>Local strain</td>
</tr>
<tr>
<td></td>
<td>Long cracks</td>
</tr>
<tr>
<td></td>
<td>Low carbon steel</td>
</tr>
<tr>
<td></td>
<td>Low-cycle fatigue</td>
</tr>
<tr>
<td>M</td>
<td>Mean value effect</td>
</tr>
<tr>
<td></td>
<td>Microstructural defect</td>
</tr>
<tr>
<td></td>
<td>Mini-TWIST flight spectrum</td>
</tr>
<tr>
<td></td>
<td>Multiaxial fatigue</td>
</tr>
<tr>
<td></td>
<td>Multiaxial loading</td>
</tr>
<tr>
<td></td>
<td>Multiple site damage</td>
</tr>
<tr>
<td></td>
<td>Multiple two-step loading</td>
</tr>
<tr>
<td>N</td>
<td>Nickel-base super-alloy</td>
</tr>
<tr>
<td></td>
<td>Nodular cast iron</td>
</tr>
<tr>
<td></td>
<td>Nonlinear stress field</td>
</tr>
<tr>
<td></td>
<td>Non-proportional loading</td>
</tr>
<tr>
<td></td>
<td>Notch</td>
</tr>
<tr>
<td></td>
<td>Plasticity</td>
</tr>
<tr>
<td>O</td>
<td>Optical microscopy</td>
</tr>
<tr>
<td></td>
<td>Overloads</td>
</tr>
<tr>
<td></td>
<td>Periodic</td>
</tr>
</tbody>
</table>

P
- Palmgren-Miner rule, 369
- Periodic overloads, 482
- Plasticity, 232, 468
 - Cyclic, 505
 - Notch, 251
- Plasticity-induced crack closure, 453
- Plastic zone, 492
- Poisson's ratio, 408
- Probabilistic analysis, 521, 535

R
- Rainflow algorithm, 381, 544
- Rainflow counting, 3
- Random fatigue resistance, 200
- Random loading, 67, 320, 544
- Random vibration, 200
- Reconstitution, 3
- Reliability analysis, 492
- Residual stress effect, 299
- Resonance control, 67
- Resonance test facility, 67
- Response surface, 521

S
- Safety factors, 535
- Semi-probabilistic, 535
- Servo-hydraulic closed-loop control, 53
- Ships, 420, 535
- Short cracks, 81, 186, 320, 435, 482
- Small-crack life prediction, 140
- Spectrum editing, 113, 278
- Spectrum fatigue, 140
- Spectrum loading, 3, 36, 67, 232
- Spectrum testing, 171, 544
- Stainless steel, duplex, 505
- Standardization, 36
- Standards, international, 24
- Static testing, full-scale, 99
- Steel, 395
 - Low carbon, 435
- Stiffness, 408
- Stochastic resonance, 200
- Storm model, 420
- Strain amplitude, 505
- Strain energy density parameter, 544
- Strain measurement, 99
- Stress envelope, 200
- Stress intensity factors, 232, 251, 335
- Stress intensity range, threshold, 482
- Stress-strength interference analysis, 381
- Structural analysis, 127
Structural certification, 99
Structural integrity, 24
Suspension modules testing, 349

T
Temperature, 154
Tensile overloads, 154
Test acceleration, 349
Threshold of stress intensity range, 482
Thresholds, 299
Titanium alloy, 154, 232
Torsion, 567
Transient loads, 154
Truncation methodology, 113
TWIST spectrum, 186
Two-step loading, 369

U
Underloads, 154, 369, 453

V
Variable amplitude fatigue, 3, 24, 215

W
Weight function, 335
Welded joints, 492, 535
Welding irregularities, 420
Wheel/hub subassembly, 557