Subject Index

A
Acid blue 9, 101
Acrylic fiber, 51, 53–54
infrared spectra, 53, 57
Airy disk, 6, 13–14
centrally obscured optical system, 19
three-dimensional view, 15
values of parameters related to, 16–17
Aluminum foil coating, 94–95
Analect fX-515 microscope module, 49
Analect fX-6260 Fourier transform infrared spectrophotometer, 49
Analect microscope, 29–31
Apatite, infrared spectra, 58, 60

B
Beam displacement, 20–21
Benzotriazole, spectra, 102
Blue circles, 21

C
Capillary brush, preparation, 43–44, 47
Cassegrainian infrared microscope objective, 18–19
Cellulosic disk, contaminant spectra, 34–35
Chromatic aberration, 21–22
Coma, 21–22
Contaminant identification, 97, 106
Cotton fiber, 51, 53–54
infrared spectra, 55–56, 59, 71
Cotton-polyester fibers, infrared spectrum, 70

D
Diamond anvil cell, 62
Diamond cell
high pressure, 50, 52, 62–63
moderate pressure, 50, 52, 61–62
Diamonds, type II, spectra, 51, 53
Dichroic measurements, 4, 6
Differential scanning calorimetry, polypropylene thermogram, 81–82
Diffraction (see also Airy disk), 12–20
combination of patterns close to each other, 14–16
equations and implications of, 14
Rayleigh criterion, 16
Sparrow criterion, 16
specimen size, 17–18
Digilab FTS-15 spectrometer, 97
Dispersion, 24
Dissecting forceps, 36

E
Ethylene/olefin copolymer
infrared microtransmittance spectra, 87–88, 90
optical micrographs, 87–88
EVAL, infrared spectrum, 79
112 INFRARED MICROSCOPES

F

Failure analysis tool, 27

Fiber

analysis (see also Single-fiber spectroscopy; specific fi-
bers), 64–73

30 to 50 μm in diameter, 65–
67
equipment used, 65

less than 30 μm in diameter, 67–69

small clumps, 69–72

identification, 51–60

specimen

acting as lens, 20

preparation, 53, 60
types, 64

Fourier transform infrared micro-
spectrophotometry, 27–38

required tools, 36

Fourier transform infrared spectroscopy, 84

fXA-515 FT-IR microscope, 27

G

Gels, 84

H

Handi-Anvil technique, 67, 72

Heart tissue, cross section, under

slightly uncrossed polars, 42

I

Identification

contaminant, 97, 106

microscopic particles, 49

Infrared microspectrometry, 39, 64,

74

fiber-shaped specimen as lens, 20

resolution limit, 14

Infrared microspectroscopy, poly-
meric materials, 84–96

heterogeneous polymeric mate-
rials, 86–91

instrumentation, 85

multilayer polymer structures,

91–94

optical micrographs, 86

specimen, 85

Infrared polarizer attachment, 89

Infrared reflectance microspectros-
copy, polymeric materials, 94–95

Infrared spectroscopy, 84

Infrared ultramicrospectrometry,

21, 23–26

layout, 24

polystyrene, 24–25

Ind additive, micro Fourier trans-
form infrared spectropho-
tometry, 100–102

Internal reflection spectroscopy,

polymer systems, 76

IRMA, schematic diagram, 77

L

Laminate, 84

multilayer, micro Fourier trans-
form infrared spectropho-
tometry, 104–107

M

Mercury cadmium telluride detector,

65

Micro Fourier transform infrared

spectrophotometry, 97–107

additive in ink, 100–102

applications, 99–100

lubricant in formed polyamide

block, 100, 102

microliter volume of contami-
nant, 106

multilayer laminate, 104–107

permanent microscope mount,

97–99
Microsampling, 12, 27, 84
Microscope, optical path, 39–41
Microscopic infrared spectroscopy, polymer systems, 76–78
Microspecimens, flattening, 20
Microspectrometry, 27, 49–63
comparison with ultramicrospectrometry, 23–24
custom-built accessory, 50–51
fiber identification, 51–60
high-pressure diamond cell, 50, 52
moderate-pressure diamond cell, 50, 52
Microspectroscopy, 84
Morphology, 84

N
Nylon fishing line, high-pressure diamond cell, 62–63

O
Off-axis aspherical mirrors, 21–22
On-axis Cassegrainian optics, 21
Optical theory/diffraction, 12
Orlon, 65–67

P
PET
fiber, spectrum, 6, 8
infrared spectra, 68–70, 72
p-phenylene terephthalimide
dichroic spectrum, 6, 8–9
single fiber, dichroic spectrum, 6, 9
Polarization studies, 6, 8
Poly(acrylonitrile-co-ethyl acrylate) fiber, 65–67
Polyamide
contaminant spectra, 34–35
formed block, lubricant in, 100, 102
Polyester fiber, infrared and Raman spectra, 60, 71
Polyethylene film
gel in, infrared microtransmittance spectra, 86–87
optical micrograph, 86
spectra, 32–33
Polyethylene terephthalate fiber (see PET)
Poly(ethylene-vinyl alcohol), infrared spectrum, 79
Polyglycol, contaminant spectra, 37
Polymeric materials, 74–84
analysis, 39
heterogeneous, infrared spectroscopy, 86–91
infrared reflectance microspectroscopy, 94–95
internal reflection spectroscopy, 76
microscopic infrared spectroscopy, 76–78
multilayer, infrared microspectroscopy, 91–94
position and function of materials in multilayer films, 75
pyrolysis, 39
simultaneous DSC/FT-IR, 78–83
Polypropylene
DSC thermogram, 81–82
infrared spectrum, 79
melting, changes in infrared spectrum, 83
spectra of thread cross sections, 43
Polysulfone fiber, in epoxy matrix spectrum, 5, 7
subtraction spectrum, 6–7
Polytetrafluoroethylene, spectra of thread cross sections, 43
Polyurethane 3, 91–93
Potassium bromide window, 27–28
Pressure anvil cell, 66
R
Rayleigh criterion, 16
Redundant aperturing, 21
Reflective on-axis optics, 18–19
Refrigerator door gasket, infrared spectra, 61
Reproducibility, 47
Rubber cement, infrared spectra, 58, 60

S
Simultaneous DSC/FT-IR apparatus, 78, 80–81
polypropylene thermogram, 81–82
Single-fiber spectroscopy, 4–11 experiment, 4–5
physical aperturing at specimen, 6, 8
specimen size and reliability of results, 5–6
transmission curve, 5
Specimen preparation, 36, 39–48 applying drop of solvent to capillary, 45–46
applying pyrolyzate solution to salt plate, 46
capillary brush preparation, 43–44, 46
fibers, 53, 60
microspecimen flattening, 20
polymeric materials, 85
pyrolyzing particle in closed capillary, 45–46
technique, 42–48
Spectrophotometer, 39–40
Stereo-zoom microscope, 36

T
Thermal analysis, 74
Tungsten needles, 40–41

U
Ultramicrospectrometry, compared with microspectrometry, 23–24

W
Wedge cell effect, 20
Wool fiber, 51, 53–54, 56