Subject Index

A
Actinides, determination of, in radioactive materials, 6, 81, 121
ALARP (as low as reasonably practical) principle, 7
Alpha active samples, facilities for analysis of, 10–11
Alpha-emitting radionuclei, emission spectroscopic study of, at the Ames Laboratory facility, 83–93
Americium, extraction of, from trace elements, 6, 63–65
Ames Laboratory facility, emission spectroscopic study of alpha-emitting radionuclei at, 83–93
Aqueous solution analysis, 120
Arc/spark emission, for radioactive sample analysis, 41
Atomic absorption spectroscopy for plutonium metal analysis, 60
for radioactive sample analysis, 41

B
Basalt Waste Isolation Program (BWIP), 36, 39
Beckman Spectraspan VI spectrometer, adaptation of, to a plutonium glove box, 95–105
Beta-gamma samples, facilities for analysis of, 10–11
Brine leachate solution analysis, 119, 120
Bruyeres le Chatel Center (France), plasma emission spectroscopy analyses of toxic and radioactive materials at, 73–82

C
Containment controls, and operator exposure to radioactive materials, 7–8, 12–13, 15, 61–63, 126, 132

D
DCP electrode system, configuration and operating parameters of, 28–29
DCP source enclosure, analysis of requirements for, 30–31
DHDECMP (dihexyl-n,n-diethylcarbamoylmethylene phosphonate), use of, as extractant, 6, 61, 63–65
Direct-current plasma (DCP) source glove box analysis of requirements for, 30–31 characteristics of materials introduced and removed by exhaust from, 28 configuration and operating parameters of, 28 external exhaust temperature measurements for, table, 27 external surface radiation measurements for, table, 27 maintenance operations, 29 plasma operation and computer interaction processes, 28–29 for plutonium sample analysis, 16–26 table, 27 quantities of standards and samples utilized in operations, 29 replacement and alignment of electrodes, 29 utilities specifications, 28 waste disposal, 29 Dissolver solutions, dose rates of, 59 Dounreay facility, analysis of alpha and beta-gamma active samples at, 10–11

E
Emission spectroscopic study of alpha-emitting radionuclei at the Ames Laboratory facility, 83–93
Enclosed sources
adaptation of Beckman Spectraspan VI spectrometer to a plutonium glove box, 95–105
Ames Laboratory facility for the emission spectroscopic study of alpha-emitting radionuclie, 83–94
plasma emission spectroscopy analyses of toxic and radioactive materials, 73–82
Ergonomics, and glove box design, 25

F

Facility design, and radioactive analysis, 5, 11–13
Fume hoods, as means of controlling operator exposure, 7–8, 13, 36

G

Glove box containment
adaptation of Beckman Spectraspan VI spectrometer to, 95–105
and analysis of alpha-emitting radionuclie, 83–93
design of, 16, 25, 84–87, 88, 111–112
and determination of metals in plutonium solutions, 16–27
impact of, on performance quality, 22, 79, 81–82
as a method of controlling operator exposure, 7–8, 12–13

H

Hanford Engineering Development Laboratory
ICP-AES analysis at the PUREX plant process support laboratory, 41–59
ICP analysis of radioactive samples at, 35–39
Harwell ICP-OES facility, design of, 5, 11–13
Hazardous samples, application of plasma emission spectroscopy to (see Radioactive materials)

HEPA (high-efficiency particulate air) filters, 13
disposal of, 13
efficiency of, 6, 13
to ensure operator protection, 6–7, 12–13, 15, 18, 35, 159–160
in ICP-AES analysis, 35
as a radiation source in an ICP-OES analysis system, 8, 13
Hot cell installations
development and layout of an ICP excitation unit in, 146–155
remote inductively coupled plasma atomic emission spectrometry at the Idaho Chemical Processing Plant, 131–145
Hot cells, as a means of operator protection, 36

I

ICP excitation unit, development and layout of, in a hot cell, 146–155
Idaho Chemical Processing Plant, remote ICP-AES at, 131–145
Inductively coupled plasma atomic emission spectrometer (ICP-AES) analysis
advantages of, 131
of alpha-emitting radionuclie, 83–93
disadvantages of, 131–132
at the Idaho Chemical Processing Plant, 131–145
modification of, for analysis of plutonium impurities, 60–65
at Pacific Northwest Laboratory, 109–120
of radioactive solutions at the Los Alamos facility, 121–128
in a separations process plant laboratory, 41–59
simplified system for, on radioactive samples, 35–39
of toxic and radioactive materials at Bruyeres le Chatel Center (France), 73–82
for trace impurity analysis of metals, 60
Inductively coupled plasma/direct-current arc atomic emission (ICP/D-C AAE) spectrometer, design for, 66–70
Inductively coupled plasma source optical emission spectrometer (ICP-OES), analysis of radioactive materials by, 5–13

Lawrence Livermore National Laboratory, determination of trace metals in plutonium solutions at, 16–31
Liquid-liquid extraction, for analysis of plutonium impurities, 63–65
Los Alamos facility, inductively coupled plasma atomic emission spectrometric analysis of radioactive solutions at, 121–128

Matrix match, 120
Metals, determination of, in plutonium solutions, 16–27
Methodology controls, and operator exposure to radioactive materials, 9
Monochromator, 9
Multielement analysis, use of ICP-OES for, 5

Nebulizers, use of recirculating, for radioactive disposal, 15
Nevada Waste Storage Investigation Project (NNWSI), 39
Nuclear fuel reprocessing, analysis of, at the Idaho Chemical Processing Plant, 131–145
Nuclear waste materials, testing of, 100, 115, 119

Open insulations design for a contained inductively coupled plasma/D-C arc atomic emission spectrometer, 66–70

Plutonium extraction of, prior to analysis by ICP/AES, 59
extraction of, from trace elements, 6
modification of an inductively coupled plasma atomic emission spectrometer for analysis of impurities, 60–65
use of a glove box enclosed direct-current plasma source for analysis of, 16–26
Plutonium uranium reduction extraction (PUREX) plant process support lab-
oratory, an inductively coupled plasma emission spectrometer system in, 41–58

Polychromator, 9
to measure trace elements, 6
and radiation protection, 9, 12

Protective clothing, and operator protection, 39

Public exposure, and ICP-OES analysis of radioactive materials, 6–7

R

Radiation hazards, influence of, on facility design, 5, 11–13

Radioactive aerosol, production of, by a plasma source, 5, 6

Radioactive materials
analysis, methods of, 41, 159–160
determination of trace elements in, 6
ICP-OES analysis of, 5–13, 109–120
plasma emission spectroscopy analyses of, 73–82, 159–160
simplified system for doing ICP analysis on, 35–39

Radioactive solutions, inductively coupled plasma atomic emission spectrometric analysis of, at the Los Alamos facility, 121–128

Radioactive waste processing
and the Basalt Waste Isolation Program at Hanford, 36, 39
Pacific Northwest Laboratory proposed plan for, 115, 119
use of recirculating nebulizer for, 15
Remote analysis, ICP-AES at the Idaho Chemical Processing Plant, 131–145

Rocky Flats Plant, atomic emission spectroscopy laboratory at, 60–65

S

Safety interlock mechanism, 59

Savannah River Plant, atomic emission spectroscopy laboratory at, 66–70
Sellafield facility, analysis of alpha and beta-gamma active samples at, 11

Separations process plant laboratory, use of an ICP emission spectrometer system in, 41–59

Shielded enclosures
ICP-AES radioactive sample analyses at Pacific Northwest Laboratory, 109–120

Los Alamos facility for ICP-AES analysis of radioactive solutions, 121–128

Shielding, use of, to control operator exposure to radioactive materials, 8–9, 12, 126, 132

Simplified system spectrometry, for doing ICP analysis on radioactive samples, 35–39

Spectral interferences, and ICP-OES analysis of radioactive materials, 6
Stack off-gases, monitoring of, 120

T

TBP (tri-n-butyl phosphate), as extractant, 6

TNOA (tri-n-octylamine, as extractant, 6

TOPO (tri-n-octyl phosphine oxide, as extractant, 6

Toxic materials, plasma emission spectroscopy analyses of, at Bruyeres le Chatel Center (France), 73–82
Trace elements, determination of, in radioactive materials, 6
Trace impurity analysis of metals, ICP-AES for, 60

U

United Kingdom, ICP-OES analysis of radioactive materials in, 5–13

Uranium
analysis of, using the ARL Model 3510 spectrometer, 39
extraction of, prior to ICP-AES analysis, 59

W

Winfrith facility, analysis of alpha and beta-gamma active samples at, 10–11