Subject Index

A
Accelerated atmospheric corrosion chamber, 374-84
Accelerated corrosion testing
of bridge wires, 82-85, 89-91
for evaluation purposes, 305
in laboratory, 359
Acid rain, 284, 287-88
and atmospheric corrosion
of metals, 79, 80, 87, 89, 327-35
of steels, 284
of zinc, 230-31, 232-34, 238-41, 284, 287-88
Alloy elements. See also Aluminum alloys; Copper/copper alloys; Steel alloys
effect of, on corrosion in stainless steels, 71-76
Aluminum
atmospheric corrosion of, 152
copper clad, 156-59
Aluminum alloys
atmospheric corrosion of wrought, 191-205
barrier coatings for the protection of, in marine atmosphere, 206-19
marine stress corrosion behavior of, 134-35, 143
Aluminum clad stainless steel, atmospheric corrosion of, 155-56
Aluminum-zinc alloy coated sheet steel, effects of weathering of chromate passivation films on, 30-34
Arc spraying, for applying barrier coatings to steel and aluminum alloys, 208-9
ASTM Committee
A-1 on Steel, Stainless Steel, and Related Alloys, 53
A-10 on Iron-Chromium, Iron-Chromium-Nickel, and Related Alloys, 52
B-4 on Metallic Materials for Thermostats and for Electrical Resistance, Heating, and Contacts, 375
G-1 on Corrosion of Metals, 1, 386

ASTM Standards
A763; 120
B 3-1957: 202-3
B S37: 55
B S57: 196
G 1: 55, 131, 147, 149, 192, 203
G 1-81: 6, 340
G 30: 131
G 39: 128, 131, 133
G 50: 131, 139, 147, 192
G 50-76, 340
G 58: 133
G 92: 126

Atmospheric corrosion
applications of the system for the, 256-57
of architectural copper work, 96-114
of bridge suspension cables, 78-95
of clad metals, 145-90
classification of, 249, 251-53, 255, 385-86
corrosion of steel and zinc in Scandinavia with respect to the classification of the, 264-81
and development of a stainless steel alloy against marine environments, 68-77
environmental effects of
on galvanized steel, 282-89
on zinc, 229-47
impact of precipitation on metal corrosion, 327-35
international standardization of the, 255-56
ISO CORRAG collaborative program, 385-431
laboratory research for, on maritime industrial atmospheres, 290-305
long-term behavior of various grades of stainless steel, 52-67
marine salts contribution to, 316-26
monitoring of, for shipboard environments, 354-65
and participation of stimulating anions, in, 291
Atmospheric corrosion (cont.)
of stainless steels, 35-51
standards on resistance, 249
using classification of, to extend service life
of materials, structures, and products, 248-63
of weathering steels
in Louisiana bridges, 16-29
in marine, rural, and industrial environments, 5-15
of wrought aluminum alloys, 191-205
Atmospheric pollutants. See Pollutants
Atomic absorption technique, 17
Auger electron spectroscopy, 69

B
Barbados, comparison of corrosion rate and chloride deposition in, 324
Barrier coatings, for the protection of steel and aluminum alloys in marine atmosphere, 206-19
Bethlehem (Pa.) test site, 14-15
Brackenridge (Pa) test site, 39, 42
Brass, and corrosion resistance, 159, 313
Bridges. See also Marine atmosphere
atmospheric corrosion of suspension cables, 78-95
weathering steels in, 16-29
Bronze, and corrosion resistance, 110, 151

C
Ceramic coatings, and corrosion resistance, 215-16, 218
Chlorides
 corrosion effects of, 279
 on aluminum alloys, 203-4
 on bridge cables, 89
 on stainless steel, 36, 71
 on steel, 279, 298, 301, 302-3, 324
 on weathering steels in bridges, 17, 19
 on zinc, 279, 298, 301, 302-3, 324
Chromate passivation films, effects of weathering on, aluminum-zinc alloy coated sheet steel, 30-34
Chromium, impact of, on corrosion resistance, 35, 44, 74-75, 76, 143
Clad metals, atmospheric corrosion of, 145-90
Climat test, 318, 319, 322
Colorimetric measurements, for analysis of corrosion of stainless steels in the atmosphere, 40, 42, 46-49
Color vision, Herring theory of, 40n
Comparative sulfidation tests, 309, 313

Computer techniques, in corrosion protection, 220-26
Connectors
corrosion problems of, 116
fretting corrosion of, 122-23
Copper clad aluminum, atmospheric corrosion of, 156-59
Copper clad stainless steels, atmospheric corrosion of, 154-55
Copper/copper alloys
atmospheric corrosion of, 96-114, 150-51
and corrosion resistance, 143
degradation of, by atmospheric sulfur, 306-15
Copper steel, corrosion resistance of, 14, 76
Corrosion. See Atmospheric corrosion
Corrosion behavior, long-term, of materials in the marine atmosphere, 125-43
Corrosion expert system
concept of, 221-22
hardware for, 225
interactive operation of, 223
philosophy in creation of, 225-26
software for, 221-22, 223-24
Corrosion film chemistry, and zinc corrosion, 234-41
Corrosion monitoring, of shipboard environments, 354-65
Corrosion prevention, future developments in, 123
Corrosion protection, computer techniques in, 220-26
Corrosion rate, time dependence of, 279-80
CORTEC, and corrosion resistance, 83
CORTEN weathering steel, corrosion resistance for, 150, 154, 159
"Cross-talk" phenomenon, 116
Cuba, comparison of corrosion rate and chloride deposition in, 324
Czechoslovakia, interest in corrosion protection in, 248-63

D
Dew point, measurement of, 341
Differential aeration cell mechanism, 26, 27
Dry deposition
effects of, 318
on galvanized steel and weathering steel, 339-53

E
Electrochemical impedance measurement
of artificially rusted steel, 369-70
of rusted steel exposed to atmosphere, 367-68
Energy dispersive X-ray analysis, (EDXA), 17
Environmental degradation, of telecommunication hardware, 115–24
Environmental effects
on corrosion, 70–71
of zinc, 229–47
of galvanized steel, 282–89

F
Flaking, as problem of atmospheric corrosion with weathering steels in bridges, 17, 19–21
Flame spraying, for applying barrier coatings to steel and aluminum alloys, 208
Fretting corrosion, of connectors, 122–23

G
Galvanization, and corrosion resistance, 80
Galvanized steel
 effect of environmental factors on corrosion of, 282–89
 effects of dry and wet deposition on, 339–53
Graphite, and corrosion resistance, 80, 87
Green patina, and architectural copper, 113
Guy strands
 corrosion problems of, 116
 hydrogen embrittlement of, 120–21, 122

H
Herring theory of color vision, 40
Hunter scale for color lightness, 40
Hydrochloric acid, corrosive effects of, 333
Hydrogen embrittlement
 as factor in bridge wire failure mechanism, 95
 of guy stands, 116, 120–21, 122
Hydrogen evolution reaction, 29
Hydrogen sulfide, corrosive effects of, 35–36

I
Inconel alloy, and corrosion resistance, 134, 137
Industrial environments, atmospheric corrosion performance of weathering steels in, 5–15
Infrared absorption spectrophotometry (IRS), 17
International Organization for Standardization Technical Committee 156 in Corrosion of Metals and Alloys, 2, 385
International Standards Organization Committee of Metals and Alloys Corrosivity of Atmospheres, 305
International Standards Organization Technical Committee 156 on the Corrosion of Metals and Alloys, 252, 255, 257
Ion scattering spectroscopy, 231–32
Iron-chromium alloys, corrosion resistance of, 35
ISO CORRAG collaborative atmospheric exposure program, 385–431

K
Kure Beach (N.C.) test site, 6, 14–15, 39–40, 43–44, 52–53, 125–26

L
Laboratory research, atmospheric corrosion in maritime industrial atmospheres, 290–305
LaQue Center for Corrosion Technology, Inc., (LCCT), 53, 125
Lashing wire
 corrosion problems of, 115–16
 stress corrosion cracking (SCC) of, 117–20
Lead coating, and corrosion resistance, 110, 111, 112, 113, 158–59
Louisiana, atmospheric corrosion problems with weathering steels in bridges in, 16–29

M
Macrophotographic examinations, of corrosion in aluminum alloys, 198
Manganese sulfide, and corrosion resistance, 75–76
Magnesium, marine stress corrosion behavior of alloys of, 134–35, 143
Marine atmosphere. See also Bridges
 atmospheric corrosion and development of a stainless steel alloy against, 68–77
 atmospheric corrosion performance of weathering steels in, 5–15
 barrier coatings for the protection of steel and aluminum alloys in, 206–19
 corrosion monitoring of shipboard environments, 354–65
 corrosion of stainless steels in, 43–44, 46, 52–67
 long-term corrosion behavior of materials in the, 125–43
Marine salts, contribution of, to atmospheric corrosion, 316–26
Maritime industrial atmospheres, laboratory research showing atmospheric corrosion in, 290–305
Plasma spraying, for applying barrier coatings to steel and aluminum alloys, 209

Pollutants
classification of, 258
corrosive effects of
on bridge cables, 79-80
on galvanized and weathering steel, 341-42
gaseous, 35-36
on steel, 285-86
on zinc, 278
and degradation of copper/copper alloys, 306-15
interaction of, with metallic alloys, 374-75
Precipitation. See also Acid rain
chemistry of, and impacts on metal corrosion, 327-35

Rain chemistry. See Acid rain
Regression analysis
in testing atmospheric corrosion
of steel, 273-75
of weathering steels, 8, 12, 349-50
of zinc, 275
Rural environments, atmospheric corrosion
performance of weathering steels in, 5-15
Rust
definition of, 55
monitoring of in-situ protective properties
of, on weathering steel, 366-73
Rust stain, definition of, 55

Salt, impact of adsorption and accumulation
of, on development of corrosion, 16-17, 28
Saylorsburg (Pa.) test site, 6, 14-15
Scandinavia
comparison of corrosion rate and chloride disposition in, 324
corrosion of steel and zinc in, with respect to the classification of atmospheric corrosivity, 264-81
Scandinavian Council for Applied Research, 265
Scanning electron microscopy (SEM), 17, 19, 82, 87, 231, 293, 307
Service life, using classification of atmospheric corrosion to extend, for materials, structures, and products, 248-63
Shipboard environments, corrosion monitoring of, 354-65
Silicon, and corrosion resistance, 71-73
Slate, and corrosion resistance, 112
Slushing oil, and corrosion resistance, 80, 85, 87
Sodium hydride cleaning process, 6, 8
Stainless steels
 atmospheric corrosion of, 35-51, 150, 155-56
 copper clad, 154-55
 and development of an alloy, against marine environments, 68-77
 long-term behavior of various grades of, 52-67, 135-36, 143
Steel
 atmospheric corrosion of, 150, 298, 301-2
 in Scandinavia with respect to the classification of, 264-81
Steel alloys, barrier coatings for the protection of, in marine atmosphere, 206-19
Steel corrosion, influence of sulfates on, 301-2, 302
Steel substrates, atmospheric corrosion of, 152-54
Stray current corrosion, 116-17
Stress corrosion cracking (SCC), 29
 as factor in bridge wire failure mechanism, 87, 95
 of lashing wires, 117-20
 and long-term behavior in marine atmosphere, 138-39, 143
Sulfates, influence of, on steel and zinc corrosion in, 301-2, 302-3
Sulfur, and degradation of copper/copper zinc, 306-15
Sulfur dioxide, corrosive effects of, 35-36, 80, 266, 278, 331, 340
Suspension cables, atmospheric corrosion of bridge, 78-95
Sweden, interest in corrosion protection in, 249
Symposium on Degradation of Metals in the Atmosphere, 1-2

T
Telecommunication hardware, environmental degradation of, 115-24
Thermogravimetric analysis (TGA), 232, 236
Thermal spray processes, for applying barrier coatings to steel and aluminum alloys, 208-9
Time of wetness, and corrosion, 276, 283, 284-85
Titanium, impact of, on corrosion resistance, 44, 46, 137-38
Triodide O3, corrosive effects of, 340

U
Underground corrosion phenomenon, 116-17
USSR, interest in corrosion protection in, 249

W
Weathering, effects of, on chromate passivation films on aluminum-zinc alloy coated sheet steel, 30-34
Weathering steel, 5-6
 atmospheric corrosion of Louisiana bridges, 16-29
 marine, rural, and industrial environments, 5-15
 effects of dry and wet deposition on, 339-53
 monitoring of in-situ protective properties of rust on, 366-73
Wet deposition
 and atmospheric corrosion of bridges, 79
 corrosive effects of
 on galvanized steel, 339-53
 on steel, 279
 on weathering steel, 339-53
 on zinc, 279

X
X-ray diffraction (XRD), 17, 19, 231
X-ray photoelectron spectroscopy (XPS), 30, 231

Y
Yale University, atmospheric corrosion of architectural copper work at, 96-114

Z
Zinc
 and corrosion resistance, 308, 313
 environmental effects of atmospheric corrosion on, 229-47, 286, 287-88
 influence of
 in barrier coatings, 210, 212-13
 chlorides on, 298, 301, 302-3
 sulfates on, 301-2
 in Scandinavia with respect to corrosion classification of, 264-81
 and wet deposition, 344
Zinc carbonate, solubility of, 343-44, 351