Subject Index

A

A533B steel
- chemical composition, 965
- CTOD versus applied stress, 479-480
- fracture toughness, 16, 967
- mechanical properties, 966
- predicted and test results, 980
- R-curve, 999-1000
- safety factor, applied CTOD, 479, 481
- stress-strain curve, 967-8

Acoustic emission, 13-14, 919

Adhesive joints, 278-283
- critical load of a joint, 282
- finite-element mesh, 281
- fracture criterion, 280
- numerical model and treatment, 280-282
- terminus, 279
- testing single-lap joints, 283
- theory, 279-280

A572 ferritic steel
- fracture surfaces, 462-463
- J-Δa curve, 382

A_k coefficients, 1059

AISI 4137H quality steel
- Charpy energy transition curves, 336
- chemical composition, 334
- mechanical properties, 335

AISI 4340 steel
- Charpy impact, 638-639
- chemical composition, 848
- ductile fatigue striations, 450
- FATT versus flow strength, 642, 645
- mechanical properties and fracture toughness properties, 631
- tensile and fracture toughness properties, 849

AISI 4335 steels, mechanical properties and fracture toughness properties, 632

Aluminum alloys, 881, 934, 1050
- crack closure behavior, 926-928
- crack-growth behavior, 110-111
- resistance, 107-109

three-hole-crack tension specimen, 113-114
- fracture toughness data, 120
- mixed-mode loading (see Mixed mode failure, aluminum alloys)
- tension data, 120

Aluminum pipe, excessive weld crown, 445, 447-448

Anti-plane shear, 821, 823

API 5LX56 steel
- chemical composition, 965
- fracture toughness, 967
- mechanical properties, 966
- predicted and test results, 980
- stress-strain curve, 967-8

Approximate analysis, ductile failure assessment, 1007

Arc bend specimens, 285-300
- annular ring segment, 286-287
- boundary collocation, solution method, 286-290
- straight three-point bend solutions, 290
- stress function, 287-288

Arctic-grade steel plate, 164-177
- bend tests, 167-169
- crack-tip blunting, 172
- experimental methods, 165-166
- experimental scatter, 174-175
- failure probability, 175
- fracture surfaces, 166, 168-170
- temperature dependence, 167-168, 172-174
- tension test, 167-168
- thickness effect, 175-177

A36 steel (see also CTOD toughness, A 36 steel), 537, 552
- finite-element analysis, 544-552
- plane-strain fracture toughness, 453

A387 steel, 603, 607-608

A508 steel, 73, 76-77, 80-81

A533 steel, 73, 76-77

A710 steel, 154-155, 349
ASTM Draft 86-03, 224
ASTM A710, 151, 153
ASTM E 8-85, 225
ASTM E 208-84, 406
ASTM E 23-82, 406
ASTM E 24, 469
ASTM E 513-74, 1029
ASTM E 561-81, 74, 451
ASTM E 616-82, 744
ASTM E 647-83, 208, 873, 882
experience with, 375
experimental requirements for determining data, 380-381
fracture resistance curve construction, 375-377
modifications, 374-388
ASTM Task Group on Crack Arrest, 74-75
Austenitic stainless steels (see also specific steels), 384, 957
Automated precracking, 390
Axially compressed columns, 804-817
beam column with rectangular cross section, 807
buckling load, 806
crack angle, versus number of load cycles, 809-810
cracked steel pipe, 807-808
crack length, versus number of cycles, 810-811
elastic buckling strength
 versus crack angle, 807, 809
 versus crack length, 808, 810-811
 versus number of load cycles, 809-810, 812
end conditions, 806
experiments, 812-817
load eccentricity, 815
load-lateral deflection relations, 816
load versus lateral deflection, 812, 814
maximum load versus crack length, 812, 814
numerical examples, 807-812
plastic model, 816
spring model, 805-807
torsional stiffness, 807-809
tubular T-joint, 810-811
B
Back-face strain, 917-918, 924
Bendbars (see Three-point bend specimens)
Bending, 151, 505
Bending moment, total effective, 595
Bentheim's solution, 704
Berry's functions, 806
B_{ik} coefficients, 1060
Blunting-line equation, 374-388
derivation, 385
initiation and definition of J_{ic}, 379-380
$J-\Delta\alpha$ curve, 382
steps for determination of blunting line, 386-388
Bolt-loaded WOL specimen, 845
Boundary collocation, 285
convergence of solution, 289-290
normalized crack mouth opening displacements, 291, 293, 296-298
normalized load-line displacements, 291, 299
normalized stress-intensity factor solution, 292-293
radius ratio effect, 291-292
solution method, 286-290
wide-range expressions, 292-299
Boundary collocation method, 107, 260
Boundary correction, 1041
Boundary effects, cracked bodies, 699-709
algorithms for computing fracture parameters, 704-705
crack geometries, 706
frozen stress analysis, 700-703
method of analysis, 699-703
Moiré analysis, 700
viscoelastic model, 701
Boundary element method, 260
Boundary force method, 259-277
accuracy and convergence studies, 266-268
comparison of indirect boundary element techniques, 261
comparisons with other solutions, 268-269
displacements, forces, and moments, 275
tube crack emanating from semicircular hole, 270
formulation, 262-264
four-hole crack specimen, 271-273
fundamental solution, 265, 273-275
influence coefficients, 263-266
stresses, 275
stress functions, 273-274
stress-intensity correction factors, 269-272
stress-intensity factors, 267-268, 275
normalized, 290, 294-295
Boundary-integral equation analysis, strip-yield model, 115-116
Box girder, cross section, 457–458
Brittle crack, 473
 behavior prediction, 52–58
 crack closure energy, 64
 crack velocity, 58, 60, 68–69
 dynamic fracture toughness, 64–66
 equations of motion, 63
 fracture toughness, 55
 mass-spring system, 53–55
 numerical constants, 55–56
 spring constants, 53–54
 stress-intensity factor, 57–58, 60
 temperature distribution, 52–53
 temperature gradients, 61
Brittle crack propagation, 61–63
 crack velocity, 62–63
 ship frame structure, 51–60
 strain distribution during, 61–62
Brittle failure, bulk carrier, 68, 70
Brittle fracture, 5, 443, 458–459
Brittle microcracks, formation, 569
Brudekin-Stone equation, 486
Bryte Bend Bridge, 457–460
BS 4360, 922
BS 5447, 535
BS 5762: 1979, 334, 337, 451, 469, 471, 509,
 517, 519, 524–525, 535–536, 538–539,
 553, 556–557, 559, 594, 742–744, 750,
 957, 961–962, 989
BS PD 6493: 1980, 468–469, 471, 473, 476,
 485, 493, 686, 688–689, 963, 975, 804–
 805, 958, 983
CTOD design curve assessment, 500–501
 fracture assessments with, 474–475
Buckling, 804
Burst tests
 plastic collapse criteria, 972
 wide plates, 964, 969–970
Butt welds, preparation, 1030
tensile stress, 437–438
 test procedures, 423–426
Cantilever beam specimens, 845
 KISCC testing procedure, 856, 863–865
 stress intensity factors, 846
Cantilever bending, 390, 393–394
Carbide particles, cracks in, 20
CB test, 856, 863–865
 KISCC testing procedure, 847
Center cracked panel, 690
Center-cracked tension, 867, 869
Center roller indentation, 597–598
Charpy energy, 243
Charpy impact, 622
 prestrain, 632, 638–640, 642, 645
 test, ductile iron, 406, 408
Charpy upper-shelf impact energy, 79–80
Charpy V-notch, 461
 correlation of energy absorption and plane-
 strain fracture toughness, 454–456
toughness, 443
Chemical inhomogeneity, role, 531
Cladding, 40
Cleavage, 5
 facets stopped at MnS particles, 528, 533
 initiation of facet from silicate particle, 531, 534
 Ritchie-Knott-Rice model, 11, 13
 size effects, 536
 steel, crack-tip failure, 11, 13–17
Cleavage microcracks, 574–575
 via acoustic emission, 13
 within shear zone, 569, 578
Cleavage toughness, 19–32
 ductile tear region, 23, 25
 experimental methods, 20–21
 facets with inclusions at focus of river
 markings, 23–24
 failure probability, as function of, 29–30
 J-integral, 21–22
 load and potential drop against load-line
 displacement, 20–21
 statistical interpretation of variability, 26–
 30
 yield strength dependence, 29–30
Clip gage measurements, load-line deflection
 calculations, 356–358
CMOD, 136, 547, 730
 measurement, 915–917
 normalized, 291, 297–298
 relation to load-line displacement, 358
 residual, 905–906
 small cracks, 896–911
 compliance and closure measurements, 901–909
 interferometric displacement gage, 899–
 901
 tensile stress, 437–438
 test procedures, 423–426
Cantilever beam specimens, 845
 KISCC testing procedure, 856, 863–865
 stress intensity factors, 846
Cantilever bending, 390, 393–394
Carbide particles, cracks in, 20
CB test, 856, 863–865
 KISCC testing procedure, 847
Center cracked panel, 690
Center-cracked tension, 867, 869
Center roller indentation, 597–598
Charpy energy, 243
Charpy impact, 622
 prestrain, 632, 638–640, 642, 645
 test, ductile iron, 406, 408
Charpy upper-shelf impact energy, 79–80
Charpy V-notch, 461
 correlation of energy absorption and plane-
 strain fracture toughness, 454–456
toughness, 443
Chemical inhomogeneity, role, 531
Cladding, 40
Cleavage, 5
 facets stopped at MnS particles, 528, 533
 initiation of facet from silicate particle, 531, 534
 Ritchie-Knott-Rice model, 11, 13
 size effects, 536
 steel, crack-tip failure, 11, 13–17
Cleavage microcracks, 574–575
 via acoustic emission, 13
 within shear zone, 569, 578
Cleavage toughness, 19–32
 ductile tear region, 23, 25
 experimental methods, 20–21
 facets with inclusions at focus of river
 markings, 23–24
 failure probability, as function of, 29–30
 J-integral, 21–22
 load and potential drop against load-line
 displacement, 20–21
 statistical interpretation of variability, 26–
 30
 yield strength dependence, 29–30
Clip gage measurements, load-line deflection
 calculations, 356–358
CMOD, 136, 547, 730
 measurement, 915–917
 normalized, 291, 297–298
 relation to load-line displacement, 358
 residual, 905–906
 small cracks, 896–911
 compliance and closure measurements, 901–909
 interferometric displacement gage, 899–
 901
CMOD (cont.)
small cracks (cont.)
material, 898
procedure, 898
versus CTOD, 547–548
versus load, 547–548, 902
CMOD gauge, 157
COD, 555, 953, 986
contour integral relationship, 990–991
crack-tip deformation, 938–939, 942
CTOD relationship, 490–491
drop and characteristic defect lengths, 497
effect of weld metal matching, 499
evaluation with crack growth, 987–990
gross stress and strain, 486–487
gross strain relationship, significance, 490–491
interaction with weld metal stress-strain, 489
testing, 334
versus crack tip energy release rate, 1079–1081
versus gross strain, 497, 499
versus load, 886, 892
versus unloading compliance load, 652
weld metal
in tension, 486
overmatching effect, 494–496
Colinear VCE technique, 302, 322, 324, 326
Compact specimen, resistance curve method, 105–107, 109–111
Compact tension testing, acoustic emission, 13–14
Compliance, 752, 1083, 1086
calibration functions, 585–586
curves, interpretation, 923–924
Mode I, 1087
Mode II, 1086
versus crack length, 903
Composites, 5
Concrete composites, crack-tip failure, 11–12
Constant-amplitude fatigue tests, 773, 778
Contour integral, 679, 682, 730, 742, 986
direct evaluation, 735–737
evaluation with crack growth, 987–990
far field, 996
independent of crack growth, 993–998
definition choice, 993–995
experimental evidence, 995–998
modified, 993–994, 996–997
nonlinear elastic definition, 1002
relationship with COD, 990–991
remote, 1077
steady-state condition, 991, 993
three parameter technique, 1001–1002
Corner-type crack cases, model geometry, 791
Corrected compliance, 600
Crack, 103
finite plate, 262
geometry, 520
infinite sheet, 251
process zone model, 6
secondary, 528, 532
shape, 1050
size, 695–696, 982
surface, following stress state, 771
threshold levels, 881–895
load versus COD, 886, 892
materials and procedures, 882–884
opening load, 886, 892–893
R-ratio effects, 888–890, 893
Crack advance, 376
Crack angle
versus elastic buckling strength, 807, 809
versus number of load cycles, 809–810
versus torsional stiffness, 807, 809
Crack arrest, 37, 223
bulk carrier, 69, 71
ferritic steel, 223–224
role, 47
ship frame structure, 51–60
Crack arrester
duplex double tension test, 61–62, 65, 67
duplex-type, 60–68
Crack-arrest resistance, 74
Crack arrest toughness (see also 7075-T6 aluminum alloy; High-temperature crack-arrest toughness)
dependence on
initiation stress intensity, 230–234
normalized crack jump, 231, 234
normalized final crack length, 232, 234
normalized remaining ligament, 232, 234
specimen thickness, 231–232
statistical data, 233
versus crack jump, 234–235
versus temperature, 69–70
undercalculation of values, 84
Crack branching, propensity for, 926
Crack closure, 821, 881, 906, 909, 934
aluminum alloys, 926–928
asperity-induced, 914, 925
energy, 64
experimental determination, 897
ferrous alloys, 926–927
load-displacement curve, 916–917–923
load versus length of small crack, 902–904
maximum stress intensity factor effect, 925
measurement, 931–928
back-face strain, 917–918, 924
CMOD, 915–917
crack tip compliance gages, 921
d-c potential drop method, 918–919
direct optical, SEM, and TEM measurements, 920–921
effective threshold method, 918
indirect thickness-averaging techniques, 918–919
interferometric techniques, 919–920, 922
interior measurement techniques, 922
interpretation of compliance curves, 923–924
near-crack-tip surface measurement techniques, 919–923
push rod compliance technique, 922
standardization of measurement techniques, 924
techniques, 915
thickness-averaging compliance techniques, 915–918, 928
ultrasonic and acoustic techniques, 919

Mechanisms, 897
Mode III, 829–830, 832
plasticity-induced, 914
primary mechanisms, 834
René 95, 192–204
closure load dependence on applied maximum stress-intensity factor, 196
experimental approach, 193–194
K_{eq} as function of K_{max}, 197–199, 203
oxide-induced closure, 202–203
percent closure, 195–197, 202–203
representing closure data, 194–199
roughness-induced closure, 197–199, 203
specimen thickness effect, 199–200
threshold, 200–202
residual compressive stresses, 1078
roughness-induced, 914, 925
small cracks, 897
steady-state condition, 1075
three-dimensional nature, 922–923
titanium alloys, 927–928
variability and mechanisms, 925–928
work calculation, 1072
Crack-closure factor, 784
Crack driving force curve, 425
Cracked beam column, 805
Cracked body, 715
Cracked plates, boundary force method (see Boundary force method)
Crack extension, 378, 402
analysis, J-integral, 682–684
comparison of predicted and measured, 603–605
determination of moment of, 408
fractional damage, 648
Mode II, 825
Mode III, 824–825, 830, 832, 840
prediction, 603–606
total, 648
virtual, 305, 322
zirconium alloys, 427
Crack faces, stress-free conditions, 261
Crack front

curvature
final stress intensity factor relationship, 854, 859
specimen compliance effect, 588–589
shape parameters, 588
tunneling, 587
Crack geometries, 137–138
Crack geometry correction factors (see also Plasticity effect)
Crack growth, 181, 380, 583, 757–763, 867, 913, 934, 986, 1050
advance, 1034
aluminum alloy specimens, 110–111, 113–114, 1063–1064
as function of K and K_{eff}, 200–201
baseline data, 773
bend specimens, 674
contour integral and COD evaluation, 987–990
from corner flaws, open-hole specimens, 1063–1064
correlation with crack-tip strain, 934, 948
criterion, 993
cyclic, 647–648, 1070–1081
analytical procedure, 1073–1077
background, 1071–1073
determination from J-R curve testing, 603
from embedded flaws, 1065–1066
experimental and finite-element analyses, 670
experimental and mixed state-of-stress analyses, 672
high cycle properties, 659
J-controlled, 432–433, 990–993, 1009
mechanisms, 192
minicompact tension specimen, 758
Mode II, stress threshold, 125, 128
Mode III, 821, 825–828
modeling technique, 208–212, 1019–1021, 1075–1076
necessary conditions, 907–908
precracking, 759
procedures, 758–759
retardation, 181, 934
root radii, 765–779
analytical stress intensity factors, 767–768, 771–773
constant-amplitude fatigue tests, 773, 778
continuity conditions, 768
idealized geometry of skin with lands, 771
integral equation solution, 772
specimens, 766–767, 769
spectrum loading fatigue tests, 778–779
stress intensity factors, 773–777
testing, 766, 769–770
secondary cracking, 760, 762
Crack growth (cont.)
simulation, 592
stable, 1005
superposition model, 656, 658, 660
threshold, 788, 833
versus CTOD, 344–345
welded structure, 730
Crack growth rate
comparison of Mode III and Mode I, 826–827
input for crack-growth analysis, 592
Mode III, 830, 832, 835
modeling, 206
300 M steel, 784–785
opening load and, 936, 938–939
René N4, 759
stress corrosion, 851–852
superimposed axial load effect, 832, 836
superimposed torsional load effect, 833, 837
versus applied stress intensity factor, 884–886
versus effective stress intensity factor, 905, 908–909
versus $\Delta K_{\text{eff}}, 915$
versus remote $\Delta K, 914$
versus stress intensity factors, 759–760, 851–852, 904–907
Crack-growth resistance
Dugdale model, 105–106
aluminum alloy compact specimens, 107–109
Crack initiation, 374, 443–449, 555, 1005, 1025
corrosion, from notches, 445, 449
d-c potential-drop technique, 337, 341–342
ductile, 569, 578
elastic-perfectly plastic material, 6–7
process, 563, 569, 577–578
at crack tip, 555–556
sequence, 563, 577
steel shaft fracture, 446
threshold dependence on yield strength, 444
Crack jump, 223, 473
Crack length
collapse-modified strip yield model, 972
critical, 425–426, 432
from d-c potential data, 870, 872
equivalent versus critical, 526–528
initial, 615
K_{isc} testing procedure, 850–851
load eccentricity, 815
load-lateral deflection relations, 816
versus compliance, 903
versus crack closure load, 902–904
versus elastic buckling strength, 808, 810–811
versus maximum load, 812, 814
versus number of cycles, 810–811
versus stress intensity factor, 890–891
versus torsional stiffness, 807–808
Crackline loading, 1056–1057
Crack mouth compliance, 585–586
Crack mouth opening, wide-range expressions, 296
Crack mouth opening displacement (see CMOD)
Crack opening angle, 993
Crack opening displacement (see COD)
Crack opening load, versus distance behind crack tip, 920
Crack opening stress, distribution, 549–550
Crack propagation, 237, 390, 443, 445–446, 449–452, 647, 781, 821–840, 896, 1025, 1050
brittle (see Brittle crack propagation)
crack closure mechanisms, 834
crack surface interference, 829–833
crack tip fields, 822–824
criterion, 301
cycle Mode I with steady Mode III, 833, 837
effect of single positive overloads on Mode III and Mode I cracks, 838–839
environment effects, 451
fatigue life, 1034
fractography, 827–829
Mode III crack growth behavior, 825–827
models, 837–838
power-law relationship, 445
self-similar, 301
stages, 450, 452
test program, 2024-T351 aluminum alloy plates, 1063
torque lost to friction, 832–833
variable-amplitude loading, 838–840
variation of growth rate with stress intensity factor fluctuation, 445, 449
Crack propagation rate
Mode III, 382, 386
open-hole specimens, 2024-T351 aluminum alloy, 1063–1064
Crack tip
blunting, 172, 337, 378, 384–386
collapsed-node structure, 1075
element geometry, 545–546
fields, 822–824
mesh structure, 1074–175
modeling, 545–546
plasticity, 934
plastic zones, 184–185
pressure, 238
INDEX 1101

primary location, 1076
profile, 378
strains, 939, 943, 951
stresses, due to in-plane loading, 437-438
stress field, 87
stretch zone measurements, 384-385
zone sizes, growing creep cracks, 874
Crack tip compliance gages, 921
Crack-tip deformation, 934-953
COD, 938-939, 942
crack tip strains, 939, 943
cyclic load application, 936-937, 940
overload and underload cycles, 937-938, 941
procedures, 935-936
residual stress fields, 943, 946, 948-951
Crack tip displacement, 826-287
Crack tip displacement model, 837
Crack tip energy release rate, 1070-1071
calculation, 1071-1072
case of 8-noded finite elements, 1073
versus COD, 1079-1081
versus remotely applied J-integral, 1079
Crack-tip failure, 5-18
discontinuous microfracture zone approach, 15-16
elastic and elastic-plastic approaches, 16
macroscopic process zone, 11-12
microscopic process zone, 11, 13-17
stress intensity, 15
theoretical model, 6-11
weakest-link models, 11, 13, 19, 26
Crack tip opening, 555
Crack-tip opening angle, 6-7, 9
Crack-tip-opening displacement (see CTOD)
Crack velocity, 238
beyond weld seam, 62
calculated and measured, 58, 60
fracture toughness as function of, 64-67
measured and calculated, 68-69
variation, brittle crack propagation, 62-63
Creep, MENT specimen, 872, 874
Creep-crack growth, 867-877
C* parameter, 873-876
crack growth measurement, 868, 870-872
equipment, 868
material, 868
specimen preparation, 868-870
Crosshead displacement
load-line deflection calculations, 355-356
CSA Z184, 688
CTOD, 31, 376, 378, 485, 505, 516, 665, 823, 913, 934
analytical relationship with J-integral, 750-753
bend bar specimen data, 519, 523-524
bend specimens, 750-751
correlation with crack-tip strain, 941-942, 947
correlation with stress intensity factor, 456
crack flank intercept, 546
versus crack growth, 344-345
crack growth criterion (see also Elastic-plastic finite-element analysis), 669
critical, 475, 519, 521, 538, 669, 681
bend bars, 524
ductile crack initiation, 569
as function of temperature, 559, 561
temperature transition range, 523
weld metal, 560
wide plates, 525
cyclic, 821-822
d-c potential-drop technique, 337, 339, 344-345
depth crack extent, 695
defined, 545-546
derivation, 508
direct SEM observation, 921
elastic and plastic, 688, 752-753
elastic-plastic correction curves, 691, 693-694
elastic-plastic estimation formula, 690
engineering estimates, 744
failure analysis diagram, 961
fracture toughness, 509, 511-512, 514
increase with crack length, 697
lowest experiment values, 543
misconceptions, 743
Mode III, 824
normal distribution statistics, 543-544
oxide-induced closure, 202
plastic, ratio to plastic J-integral, 746-747
plastic zone size, 550-552
ratio of PSF-factors, 691
relationship with COD, 490-491
relationship with J-integral, 743-748
relationship with strain, 153
SEN geometry, 690-692
temperature, 540-541
temperature transition curve, 541
toughness (see also Fracture toughness, comparison of J-integral and CTOD; Strip yield model), 690-691
versus applied stress, 479-480
versus CMOD, 547-548
CTOD approach, 468-483
bionomial method, 474
critical value, 471
fracture toughness, 469-474
load versus clip gage displacement traces, 471-472
scatter in data, 473-474
CTOD approach (cont.)
surface notches, 470
CTOD design curve, 473, 476-477, 485, 524-527, 686, 688
crack geometries, 687
drawbacks, 958
elastic correction curves, 689
equations, 963
failure assessment in terms of, 477-478
PD 6493, 500-501
CTOD toughness, A36 steel, 535-553
material properties, 537-538
procedure, 538-540
Cubic spline fit, 798
Curvature factor, 588
Curved specimens, 419
Curving crack (see Stress field, curving crack)
Cyclic hardening, 622
Cyclic loading, 1070
Cyclic softening, 622
Discontinuous microfracture zone approach, 15-16
Dislocations, planar bands, 760
Displacement, 103
boundary force method, 275
measurement methods, 1085
Divergence theorem, 716
Double-cantilever beam, R-curve behavior, 12
Ductile failure assessment, 1005-10021
approximate analysis, 1007
calculated instability loads and experimental failure loads, 1017-1019
calculated tearing instability stresses, 1019-1020
critical loads, 1007-1008
finite element analysis, 1007
influence of crack growth model on accuracy, 1019-1021
influence of material input data on accuracy, 1007-1015
influence of structural modeling on accuracy, 1015, 1017-1019
principle, 1005-1006
Ductile fracture, 443, 957, 1005
paths, 561-575
R-curve, 10-11
recommended assessment procedure, 982-983
welded pipe, 134-149
background, 135
compact tension specimen tests, 139
crack geometries, 137
direct current potential drop, 136, 138
elastic compliance technique, 138
J-integral resistance curve (see J-R curve)
load versus line displacement records, 145
materials, 135-136
normalized pipe compliance, simple and complex crack geometries, 138
pipe loading configuration, 136
pipe specimen tests, 135-139
Ductile iron (see also Fracture toughness, ductile iron)
ductile-to-brittle transition temperature shift, 417
graphite nodule role, 416-417
J-R curve, 414-415
microstructure, 407
Ductile ligaments, 5
Ductile microcracks, 569
formation, 563, 577
stress intensification at tip, 569
Ductile tearing, 23, 25, 374, 379, 661
Ductile-to-brittle transition, 555-579, 622
absence of shear zone, 568
crack initiation process, 563, 569, 577-578
curves, 556
ductile crack initiation resistance, 569, 578
ductile fracture paths, 561-575
ductile iron, 417
formation of ductile microcracks, 563, 577
fractography, 559-563
fracture surface, 559-560, 562
fracture toughness, 559-560
materials and procedure, 556-557
optical microscopy, 557-559
orientation of specimens, 557
relative orientation of stretch and shear
zones, 560, 564-567
shear and stretch zone characteristics, 561
shear crack profile, 561, 574
shear zone size variation, 561, 570-573
specimen geometry effect, 569, 574-575
stretch zone width, 561, 576
temperature, 19, 516, 523
void growth rate, 563
Dugdale model (see Strip yield model)
Duplex double tension test, 61-62, 65, 67
Duplex-type double tension test, different be­
haviors observed, 65, 67
Dynamic tear, 405
ductile iron, 408

E
Eccentricity, geometric definition, 303, 305
Eccentric loading, 301
 effects on weight function, 306, 308
 finite element mesh, 305-306
 stress intensity factor effects, 312-313,
 327-329
 three-point bend specimen, 302-303
Edge crack, 247
 half-space under pair of point loads, 249
 from semicircular hole, boundary force
 method, 270
 stiffened panel with broken stiffener, 248
 stress-intensity factors, 254-255
Edge-sliding mode, 1083
Effective compliance, 615
Effective modulus, 611, 614-617
Effective modulus of elasticity, 586-587
Effective spring modulus, 1056
Effective thickness, 586-587
Effective threshold method, 918
Eigenfunction problems, 699
Elastic analyses, J-integral, 681-683
Elastic buckling strength
 versus crack angle, 807, 809
 versus crack length, 808, 810-811
 versus number of load cycles, 809-810, 812
Elastic compliance, 134, 138
J-integral resistance curve, 140-144, 148
Elastic load point displacement, 751
Elastic modulus, 1056
Elastic-plastically deformed SENB specimen,
 theoretical and actual compliance, 590
Elastic-plastic finite-element analysis, 665-684
 computations, 593
 experimental and calculated maximum
 loads, 673
 finite-element simulation of fracture, 669-675
J-integral, 669, 682-684
J-R curve evaluations, 676-678
Elastic-plastic fracture, 516, 583, 647
Elastic-plastic fracture mechanics, 118, 535,
 622, 686, 713
Elastic-plastic models, comparison, 979
Elastic unloading S47-662
 analysis, 647-650
 crack growth superposition model, 656,
 658, 660
 fractographic analysis, 659-662
 high-cycle crack growth rate tests, 655-656,
 659
 J-R curve tests, 651-653
 cyclic, 651, 653-655
 material, 651-652
 specimen limit load, 648
 stress-intensity factor, 648-649
 study objectives, 650
Elastodynamic crack, 88
Elastoplastic analysis, 957
Electrodes, chemical composition, 1028
Elevated temperature, 757
Elevated-temperature fatigue, 206-219
 baseline data, 213-214
 crack growth modeling (see also MSE
 model; SINH model), 208-212
 application, 211-212
 comparison of models, 210-222
 effectiveness in predicting crack growth,
 217-218
 predicted and experimental results, 215-217
 procedure, 212
 variations in hold time, 217-219
 experimental program, 207-208
 specimens and procedures, 208
test matrix, 207-208
Elliptical cracks, 1051-1052
Elliptical discontinuities, 1040-1042
Embedded-type crack cases, model geometry,
 791
Energy release rate, dynamic, 58
Engine structural integrity program, 206
Equations of motion, 63
Equilibrium equation, 716
Euler beam theory, 355
Explicit weight functions, 301–329
advantage of concept, 304
along LHS-face and RHS-face locations, 319–321
along top face, 307, 309
characteristics at potential traction application boundaries, 304
collinear VCE technique, 302, 322, 324, 326
comparison of directed and indirect approaches, 319, 321
decoupled, 302
eccentric loading effects, 306, 308
function of a/W tor, 306–307
least-squares fitted coefficients
Mode I, 310, 316
Mode II, 311, 317
Mode I and II, crack-face, 312, 314–315
nodal, 304, 319
normalized stress intensity factors, 319, 322
Rice’s displacement derivative representation, 302
secondary crack-face components, 312, 318
stress intensity factors, calculation under different constraint conditions, 319, 323

Fabrication discontinuities, 1025–1048
background, 1026
B_{ijk} coefficients, 1060
boundary correction, 1041
butt weld preparation, 1030
cycles to failure
lack-of-penetration discontinuities, 1046–1047
slag/lack-of-fusion discontinuities, 1047–1048
D_{ijk} coefficients, 1061
elliptical discontinuities, 1040–1042
fatigue life data, 1029–1033
fine-tuning curve-fitting function, 1042
finite-width correction, 1042
fracture mechanics methodology, 1030, 1033–1040
lack-of-penetration discontinuity analysis, 1040–1043
materials and specimen preparation, 1026–1028
Peterson’s equation, 1038
procedure, 1028–1029
slag/lack-of-fusion discontinuities analysis, 1043, 1045–1046
through discontinuity, 1042
zero-to-tension stress condition, 1040
Factory-roof fracture, 828–289, 831
Failure
Mode II, 118
terms of CTOD, 477–478
torsional, 827–829
Failure analysis (see also Ductile failure assessment; Fracture mechanics), 433–466
Bryte Bend Bridge, 457–460
Ingram barge, 462, 464–465
loading rates, 461
problems in investigations, 458, 461–466
Failure analysis diagram, 960–961, 1007
Failure assessment diagram, 1007
Failure loads, single-edge crack tension specimens, 112
Failure probability, 29, 175
elemental, 26, 28
function of toughness, 30
Fastener forces, equations for determining, 248–249
Fastener holes, flaws at, 1050
Fatigue/cleavage interface, 13
Fatigue crack propagation, 192
Fatigue damage, 660–661
Fatigue initiation life
versus initial stress intensity, lack-of-penetration discontinuities, 1045
weldments, 1032
Fatigue life
crack propagation, 1034
fabrication discontinuities, 1029–1033
versus initial stress intensity, 1043–1045
versus nominal stress times, 1044, 1046
weldments, 1032
Fatigue pretrained Charpy, 405
Fatigue precracking, 391–393
ductile iron, 406
Fatigue thresholds, 821
2024-FC aluminum alloy, J-Δa curve, 382
Ferrite/pearlite steels, fracture toughness predictions, 17
Ferritic steel
acoustic emission, 13–14
crack arrest, 223–224
Ferrous alloys, crack closure behavior, 926–927
Finite element analysis, 260, 278, 535
adhesive joints, 281
A36 steel, 544–552
 crack opening stress, 549–550
CTOD versus CMOD, 547–548
3-D model, 545–547
ductile failure assessment, 1007
INDEX 1105

load versus CMOD, 547-548
mesh for three-point bend specimens, 545
mixed-mode failure of aluminum alloys, 120-122
plastic zones, 550-552
strip-yield model, 116-117
three-point bend specimens, 587-590
Finite-element model, single-lap joint with applied loads, 281-282
Flaw, 39
critical depth, 48
density, 40-42
geometries, definition, 1052
idealization, 1054-1058
Flaw size
comparison, 479, 482
effective, 479
effective initial, unflawed specimens, 1038-1039
standard NDE, 795
tolerable, weld metal matching, 493, 497
Flex bar, load-line deflection measurements, 354-355
Flow stresses, 963
Forces, boundary force method, 275
Forman equation, 773
modified, 783
Four-hole crack specimen, boundary force method, 271-273
Fractional damage, 648
Fractography, 555, 757
crack propagation, 759-763, 827-829
ductile-to-brittle transition, 559-563
elastic unloadings, 659-662
long and short crack tests, 893-894
Mode III failures, 822
wide plates, in bending, 527-531
Fracture, 151
criterion, 278
finite-element simulation, 669-675
most probable distance, 31
potential initiating sites, 19
Fracture appearance transition temperature, 622, 632, 642
versus flow strength, 642, 645
Fracture design, 516
Fracture mechanics, 192, 247, 285, 443, 468, 730, 757, 781, 867, 896, 957, 986, 1025, 1050
correlation of various fracture parameters, 454-458
crack initiation, 444-449
crack propagation, 445-446, 449-452
fracture toughness, 451, 453-454
methodology, 1030, 1033-1040
model, 36-40
Fracture parameters, 704-705, 1057-1058
Fracture process zone, 722
Fracture properties, 516
Fracture resistance
blunting-line equation (see Blunting-line equation)
critical, 366
effect of uncertainty in crack growth measurement, 381
gallery effect (see also Resistance curve method), 505-515
effect of crack depth to plate thickness ratio, 511, 513
fracture toughness tests, 507, 509
initiation of stable crack growth, 512, 514
large wide plates, 506-507
materials, 505-506
notch geometry effect, 510-514
plate thickness effect, 509-510
small wide plates, 507-508
stress concentration effect, 512, 514-515
stress intensity factor and stress concentration, 514-515
variation in critical bending strain ratio with aspect ratio of surface crack, 510-512
Fracture risk assessment, 468-483
comparison of assessment equations, 479-480
CTOD design curve, 477, 524-527
PD 6493, 474-475
reference stress method, 478-479
strip yield model, 477-478
three-tier approach, 475-479, 483
Fracture stress, relation with particle size, 28
Fracture surfaces
ductile-to-brittle transition, 559-560, 562
fatigue damage and ductile tearing, 661
heat-tinted, 619
notches of MENT specimen, 872-873
oxidation, 763
WOL specimens, 855
Fracture test, 516, 583
Fracture toughness, 5, 73, 151, 164, 222, 374, 443, 451, 453-454, 535, 583, 622, 957
A533B steel, 967
AISI 4340 steel, 849
aluminum alloys, 120, 785-786
API 5LX56 steel, 967
arrest toughness, 37
ASTM A 710 grade A class 3 alloy steel, 155
brittle crack, 55
changes, 56-57
cladding material, 38
cleavage, temperature dependence, 172-173
Fracture toughness (cont.)
comparison of J-integral and CTOD, 741-753
analytical comparisons, 745-748, 750-753
application to design, 748-750
comparison of J-integral and CTOD, (cont)
critical J-integral, 748-749
qualitative comparisons, 745-746
conversion of critical values of J, 172
crack growth onset, 129-130
crack tip, 69, 71
crack velocity and temperature, 56-57
critical, 620
CTOD approach, 469-474
interpretation of results, 471-473
pop-in, 473
weldment testing, 469-471
ductile iron, 405-417
Charpy impact test, 406, 408
compact tension specimens, 408
data analysis, 408-410
dynamic tear tests, 408
fatigue post-cracked, 411, 414
fractured surface, 416-147
load-displacement record for quasi-statically loaded dynamic tear specimen, 414-415
quasi-static and dynamic, 410-413
specimen preparation, 406
ductile-to-brittle transition, 559-563
dynamic, 64-65, 68
effects of cyclic prestrain, 641
elastic and plastic components, 409
experimental parameters, 175
function of cleavage fracture stress, 13
function of crack velocity, 64-67
high-temperature testing system, 393, 396-397
J-R curves, 627-629, 634-635
J-T diagram, 629, 636-637
LT60 steel, 171
maximum, A36 steel, 540, 542
mixed-mode loading, 131
Mode I, 124-125
Mode II, 118
monotonic prestrain effects, 641
plane-strain, 415, 453-454, 786
correlation with Charpy V-notch energy absorption, 454-456
yield strength effect, 453, 455
prediction, 9-10, 15-17
prestrain history effects, 622, 632, 640-644
properties, 627-629, 632
relation between static and dynamic, 458, 461
relationship with yield stress, 174-175
scatter in data, 473-474
static crack initiation, 37
strain hardening exponents, 13
terms of J-integral, 160
testing, 285
test matrix, 557
thickness dependence, 164, 176
type 316 stainless steel, 967
variability, 19
variation, 64-66
weakest link theory, 536
wide plates, 507, 509
Zircaloy-2, 427, 434-436
Zr-2.5Nb, 427-433
Fracture toughness testing
equipment, 393, 396-398
prestrain, 626
Friction force, 595
Fringe pattern, unmultiplied photoelastic, 702-703
Frozen stress analysis, boundary effects, 700-703

G
Gamma prime, distributions, 194
Gas decompression
curves, 240
velocity, 238-239, 244
G_{ik} coefficients, 1062
Global release rate, 1070
Global strain, 517
Grains, volume fraction fracturing, 14-15
Green's function, stress-intensity factors, 302
Griffith relation, 19

H
Half-space, subjected to concentrated loads, 256-257
Hardening exponent, 386-387
Heald-Spink-Worthington model, collapse-modified, 959
High-cycle crack growth rate tests, 655-656, 659
High-temperature crack-arrest toughness, 73-85
cylinders subjected to thermal shock, 79
duplex specimens, 74-76
limiting temperature, 78-80
lowered arm friction, 76-77
materials, 76-77
onset of Charpy upper shelf, 79-80
positive stress-intensity gradient, 75
temperature dependence, 80–81
using different specimen designs, 78–79
using inverted-split-pin loading, 81
Hoop stress, 737–738
Hot-rolled structural steel, 516
HT 60 steel, stretch zone measurements, 385
HT 80 steel, stretch zone measurements, 385
Hutchinson-Rice-Rosengren singularity, 26–27, 716–717, 726
Hydride morphology, Zircaloy-2, 434
Hyperbolic sine equation, see SINH model
HY 130 steel
J-R curve, 668
R-curve, 998–999
drooping, 991–992
Hysteresis loops, cyclic, 946

I
Inclusions, 19
longitudinal and transverse sections, 529
river markings focus, 23–24
role, 528, 531–534
size distributions, 23, 25–26
Inconel 718
heat treatment, 183
overload effects, 181–191
analytical model, 184–189
crack advance during sustained load, 189–190
crack-growth rate, 183–185, 187–189
delay times, 189
determination of constants, 187–189
experiments, 182–183
linear cumulative damage model, 182
loading spectrum, 182
overload ratio, 187
plastic zones at crack tip, 184–185
Indentation correction factor, 598
Indirect thickness-averaging techniques, 918–919
Influence coefficients, 249–253
boundary force method, 263–264
calculations, 265–266
Ingram barge, 462, 464–465
Initiation toughness
data, 381
predictions of nominal stress, 978
varying, 382
Zr-2.5Nb, 433
Integral equation, 247, 765
solution, 253–254, 772
Integrated Pressurized Thermal-Shock Program (see Probabilistic fracture mechanics)
Interferometric displacement gage, 899–901
Interferometric techniques, 919–920
Interferometry, 922
Interior measurement techniques, 922
Inverted-split-pin loading, 80–81, 83
Iron, ductile (see Ductile iron)
Irradiated specimens, 390

J
J-integral, 21–22, 118, 134, 164, 333, 390, 427, 536, 665, 742, 1071
analytical relationship with CTOD, 750–753
application to residual strength prediction of pressure vessel, 731–733
calculation methods, 679–680
compact and bend specimens, 676
contour integral, 679
corrected to give gross section of yielding contribution, 160–161
critical, 748–749
d-c potential-drop technique, 337, 339–340
defined, 121
definition theory, 679–680
determination from J-R curve testing, 602–603
different pressure levels, 738
direct measurement, 730–739
contour integral, 735–737
path and instrumentation applied, 734–735
precracked pressure vessel, 733–735
sealing cables, 734–735
elastic analyses, 681–683
elastic and elastic-plastic evaluation, 681–684
elastic-plastic and crack-extension analyses, 682–684
elastic-plastic finite-element analysis, 669
engineering estimates, 744
function of remote strain, 152, 158–160
function of strain, 160–161
Gurtin’s 719–720
maximum, fracture angle, 132–133
m factor, 745–747
misconceptions, 743
modified, 626, 631–632
notched tensile panels, 752
path, 121
path-independent integrals (see Path-independent integrals)
pipe specimens, 136–137
plastic, ratio to plastic CTOD, 746–747
versus pressure, 737–738
Ramberg-Osgood curve, 152–153, 159
relationship with CTOD, 743–748
J-integral (cont.)
remotely applied versus crack tip energy release rate, 1079
residual strength prediction, 732, 734
Rice's 735
testing, 334
modified compact specimen, 652
thermodynamic background, 718-719
variation in total potential energy, 680
Wilson and Yu's, 717-719
Wilson bilinear curve, 152-153
J*-integral, 721-722, 726
J-integral, 722-723
J-integral resistance curve
compact tension specimen, 146-147
comparability of pipe and compact specimens, 147-149
complex crack geometry pipe specimen, 142-146
simple crack geometry pipe specimen, 140-142
Joint factor, 283
J-R curve (see also Elastic unloadings), 419, 622, 666-667
baseline unloading compliance, 653
compact tension specimen, 146-147
comparability of pipe and compact specimens, 147-149
complex crack geometry pipe specimen, 142-146
cyclic damage removed, 656, 660
cyclic hardening effects, 658
definition theory, 676-678
ductile iron, 414-415
elastic-plastic finite-element analysis, 676-678
failure assessment using, 1006
irradiated reactor pressure tubes, 425
material, 1015-1017
plane-strain, 666
precracking, 400-403
prestrain history effect, 626-627, 632, 634-635, 640-641
scatterbands, 658
simple crack geometry pipe specimen, 140-142
using contour integral, 678
variation effect on ductile failure assessment, 1015-1016
Zircaloy-2, 436
Zr-2.5Nb, 427, 429-431
J-R curve testing, 347-373, 583-608
analyses, 584-585
center roller indentation, 597-598
compact tension testing, 349, 366, 370-372
compliance calibration functions, 585-586
corrected compliance, 600
correction factors, unloading compliance experiment, 603, 606
crack extension prediction, 603-606
crack front curvature, 587-589
cylic, 651, 653-655
definition correction factor, 591-592
elastic unloadings, 651-653
engineering stress-strain data, 601
friction at and movement of out rollers, 593-596
indentation correction factor, 598
influence of outer roller movement and roller friction on compliance, 596
load-line deflection measurements, 352-356, 366-369
load versus load-line deflection, 356, 359
material and specimens, 348-350, 600-601
procedure, 601-602
roller correction factor, 596
specimen
definition, 589-593
rotation, 599
test equipment, 600-602
test matrix, 601
thickness and Young's modulus, 586-587
three-point bend testing, 349, 351-352
J-T curves, effect of prestrain history, 629, 636-637
J-T diagrams, 622, 629, 636-637, 641

K

K_{ISCC} testing procedure, 843-865
CB test, 847, 856, 863-865
crack from curvature relationship, 855, 859
data analysis, 847-848
interlaboratory round robin test participants, 844
load versus displacement, 855, 861
material and procedure, 848-849
relation between initial value and elapsed time, 856, 863
relation between specimen thickness and elapsed time, 855, 861
rigid-bolt and elastic-bolt analyses, 853-854
scope, 845
solution pH and temperature effects, 855, 860
specimen configuration, dimensions, and preparation, 845-846
test environment, 845
WOL test, 846-847, 850-856
yield strength relationship, 854, 859
INDEX 1109

Lack-of-penetration, 1025, 1026
cycles to failure, 1046-1047
discontinuities, 1034-1035
analysis, 1040-1043
fatigue initiation life versus initial stress intensity, 1045
fatigue life versus nominal stress times, 1044
initial stress intensity versus fatigue life, 1043-1044
Law of energy-balance, 64
Ligament yielding, 786
Linear elastic fracture mechanics, 104, 192, 207, 223, 510, 516, 699, 742, 867
collapse-modified strip yield model, 975
cyclic crack growth, 1075
Linear variable differential transformer gages, 157-158
Lloyd’s LT60, 164
Load-displacement, 752
crack closure, 916-917-923
cyclic, 653-655, 657
measurements, 84
normalized, 1009, 1014
power-law function, 751
stress-strain law effect, 1009, 1013
thin and thick MnMoNi 55 steel, 1015, 1018
three-point-bend specimens, 167, 169
Load drop analysis, 611, 618
Loading parameter, 1006-1007
normalized, 1009, 1014
stress-strain law effect, 1009, 1013
Load limit, 619, 648
Load-line compliance, 585
Load-line deflection measurements, 347, 352-356
calculated from
clip gage measurements, 356-358
crosshead displacement, 355-356
comparison of measurements, 357, 360-364
effect on J-R curve testing, 366-369
least-squares coefficients, 357, 364
measurement
flex bar, 354-355
photographs, 352-354
residuals, 357, 365-366
Load-line displacement, 611
bend specimens, 675
versus crack length, 616
experimental and finite-element analyses, 670-671
experimental and mixed state-of-stress analyses, 673
irradiated 348 stainless bend specimens, 612-613
normalized, 291
precracking, 400-401
Local strain, defined, 517
Long cracks, 881, 888-890
Low-alloy steels, 957
Low-cycle fatigue, 206
LT60 steel, 165, 171
Lüders strain, 151, 154, 1009
Lugs, 1050
 crack growth from embedded flaws 1065-1066
Lug tests, 1065-1066

M
Macrofretting damage, 893
Macroscopic specimen, failure probability, 26
Manganese sulfide inclusions, 516
stringers, 528
Mass-spring system, 53-55
Material-induced singularities, 278
Material strength, versus fracture toughness, 642-643
Maximum load toughness, 962-963, 972, 975-978
Mechanical model, 247-248
Mechanical properties, 516, 896
dependent on tempering temperature, 335
m factor, 745
as function of CTOD, 746-747, 748
effect of specimen constraint, 746
Microalloyed steel, 164
Microcleavage, origins, 13-14
Microcracks, 7, 896
cleavage, 574-575
within shear zone, 569, 578
coplanar, nucleating, 14
critical, 31
ductile (see Ductile microcracks)
failure probability, 20
identification, 20
size distribution, 27-28
Micromechanical models, crack propagation, 837-838
Microstructure, 5
chemical inhomogeneity, 527, 530-531
Microvoids, 7
Middle-crack tension specimen, resistance curve method, 107, 111
Mixed fracture mode, 301
Mixed mode failure, aluminum alloys, 118-133
Mixed mode failure, aluminum alloys (cont.)
compact shear specimen, 119–122
computer-generated shear stress contours, 122, 126
configuration of compact shear specimens prior to final testing, 122–123, 127
critical stress-intensity factors, 129, 131
fracture angle between maximum J-integral and tangential stress failure criteria, 132–133
fracture toughness, 129–132
J-integral, 121
loading case definition as function of boundary constraint, 122
loading conditions, 122, 124–125
maximum load values, 128–129
shear stress at failure and predicted flow shear stress, 128–129
sympathetic shear crack growth, 129
Mixed state-of-stress simulations, definitions, 671–672
Mode II loading, 123, 128
Mode II test specimen calibration, 1083–1088
compliance values, 1086–1087
data analysis, 1086–1087
displacement measurement, 1084–1085
EVBP/P values, 1086
procedure, 1085–1086
specimens, 1084
stress-intensity coefficients, Mode II, 1087–1088
Modified sigmoidal equation (see MSE model)
Moiré analysis, boundary effects, 700
Moments, boundary force method, 275
MSE model, 207, 210
fitting data, 212
interpolative capabilities, 215
300 M steel, crack growth rate, 784–785
Multiple-edge-notch tension specimen, 867, 870
creep 872, 874

N
NASA/FLAGRO computer program, 781–802
σ-values, 794–795
code system, 792
crack case solution subroutines, 788–789
cubic spline fit, 798
future enhancements, 795–796
interpolation routines, 787, 797–798
limit-load criterion, 786, 788
materials properties files, 789, 792
model geometry, 790–794
piecewise hermite cubic polynomial fit, 798
problem input sequence, 799–802
standard NDE flaw sizes, 795
subroutines and files, 788–795
theoretical background, 783–788
Natural gas transmission, 237
Near-crack-tip surface measurement techniques, 919–923
Newman's equation, 784
Nickel base superalloy, 181, 192, 757
SNi-Cr-Mo-V steel, 1025
Nil-ductility transition temperature, 5
3 Ni steel alloy, 349, 651, 659
Nodular cast iron, 405
Nondestructive testing, 468, 1025
Notch ductility, 237, 243, 245
Notch geometry, fracture resistance effect, 510–514
Nuclear power plants, probabilistic fracture mechanics study, 44–45

O
Open-hole tests, 1063–1065
Optical microscopy, ductile-to-brittle transition, 557–559
Outer rollers, friction at and movement of, 593–596
Overload, 181, 934, 935, 937–938, 941
ratio, 187
Overmatching, 485
Overtorque, 838
Overtwist, 838
Oxidation, 192, 763
Oxide-induced closure, 202–203

P
Parabolic fatigue cracks, 1050–1068
A_{ij} coefficients, 1059
calculated results, 1058
crack growth from corner flaws, open-hole specimens, aluminum alloy, 1063–1064
crackline loading, 1056–1057
crack paths and front, 1052, 1054
crack propagation rate, open-hole specimens, aluminum alloy, 1063–1064
displacement matching, 1054, 1056–1057
energy release rate, 1057
experimental program, 1058, 1063–1065
flaw idealization, 1054–1058
fracture parameters, 1057–1058
generalized weight function, 1056
G_{ij} coefficients, 1062
lug tests, 1065–1066
INDEX 1111

open-hole tests, 1063-1065
slicing procedure, 1054-1055
stress-intensity factors, 1057
Paris equation, parameter values, 1035
Paris law, 840, 1034
Path-independent integrals, 713-728, 822
ingeering applications, 725-726
Gurtin's, 719-720
integration paths and areas, 715
J-integral, 715-717
J^*-integral, 721-722, 726
T-integral, 722-723
summary, 727
ΔT-integral, 723-725
Wilson and Yu's, 717-719
Peterson's equation, 1038
Photoelastic and Moiré interferometric
method, 699
Photoelastic studies, 86
Piecewise hermite cubic polynomial fit, 798
Pipeline, 237
Pipe-line girth weld, 686-687
Planar slip, 194
Plane stress, 7
Plastic collapse, 468, 475
Plastic constraint, 15
Plastic deformation, 103, 665
Plasticity, 686-697, 825
analysis for long defects, 688, 690-692
COD design curve, 688
defective welded joints, 486
Plastic strain, true, 166
Plastic zone
boundaries, 1077
crack tip, 184-185
Mode III, 824
nomenclature, 824
radius, 886
size, 105, 107, 186, 550-552, 907, 934, 941, 947
under plane-strain conditions, 823
strains within, 939-941, 943-947
Pop-in, 473, 627
Potential energy, cracked plate, 680
Power-law expression, 27
Prandtl-Reuss equation, 724
Precracking, 390-403, 759
amplified unloading curves, 400-401
applied load, 392
cantilever bending, 393-394
computer program, 398
equipment for monitoring and controlling,
393, 395
fatigue, 391-393
fracture toughness testing equipment, 393,
396-398
irradiated type 348 stainless steel, 402-403
J-R curve, 400-403
load versus load-line displacement, 400-
401
machining specimens, 391
procedure, 390-391, 398, 400
Pressure tests, 957
Pressure vessel (see Reactor pressure vessel)
Pressurized thermal shock, 37-48
Pressurized water reactor, 35
Prestrain, 623-645
Charpy impact properties, 632, 638-640,
642, 645
cyclic, 622-623, 625
cyclic prestraining schematic, 625
fracture toughness
properties, 627-629, 632, 640-644
tension specimens, 625
testing, 626
material, 623
mechanical properties, 626-631
mechanical testing, 624-625
monotonic, 622-623
specimen preparation and prestrain his-
tory, 623-624
tensile properties, 632, 640-644
tension testing, 625
Prestressing, warm, 38-39, 47-48
Primary stress, effective, 476-477
Probabilistic fracture mechanics, 37-48
cladding, 40
conditional probability of vessel failure,
42-43
crack arrest role, 47
critical flaw depths, 48
downcomer coolant temperature and pri-
mary-system pressure versus time, 46
failure criteria, 44
flaws, 39
density, 40-42
fluence attenuation through vessel wall, 38
fracture mechanics model, 36-40
fracture toughness, 37-38
frequency of failure, 36
importance sampling, 43
OCA-P program logic, 41
parameters simulated, 40
$P(F|E)$ versus effective full-power years,
45-46
plants included in studies, 44-46
probabilistic model, 40-44
relative contribution of plate and weld, 45
statistical error, 44
stress intensity factor, 36-37
tearing-resistance curve, 37-38
time of events, duration of transient, and
warm prestressing, 47
warm prestressing, 38-39, 47-48
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic model</td>
<td>40-44</td>
</tr>
<tr>
<td>Process zone</td>
<td>5-6</td>
</tr>
<tr>
<td>local stress and strain</td>
<td>9</td>
</tr>
<tr>
<td>semicohesive zone model</td>
<td>6,8</td>
</tr>
<tr>
<td>size variations</td>
<td>6-7</td>
</tr>
<tr>
<td>variable size</td>
<td>15</td>
</tr>
<tr>
<td>Propagating shear fracture</td>
<td>237-245</td>
</tr>
<tr>
<td>application</td>
<td>243-245</td>
</tr>
<tr>
<td>Charpy energy</td>
<td>243</td>
</tr>
<tr>
<td>design stress dependency of required notch ductilities</td>
<td>245</td>
</tr>
<tr>
<td>estimated crack propagation</td>
<td>241-242</td>
</tr>
<tr>
<td>experiments</td>
<td>240-243</td>
</tr>
<tr>
<td>gas decompression</td>
<td>240</td>
</tr>
<tr>
<td>curves</td>
<td>238-239, 244</td>
</tr>
<tr>
<td>velocity</td>
<td>244</td>
</tr>
<tr>
<td>propagation distance</td>
<td>238</td>
</tr>
<tr>
<td>required notch ductilities</td>
<td>243</td>
</tr>
<tr>
<td>test conditions of full-scale burst tests</td>
<td>240</td>
</tr>
<tr>
<td>theory</td>
<td>238-240</td>
</tr>
<tr>
<td>Pseudo-elastic peak stress</td>
<td>474-475</td>
</tr>
<tr>
<td>Push rod compliance technique</td>
<td>922</td>
</tr>
<tr>
<td>R</td>
<td>275-277</td>
</tr>
<tr>
<td>Radial line method</td>
<td>1012</td>
</tr>
<tr>
<td>Ramberg-Osgood constants</td>
<td>152-153, 159</td>
</tr>
<tr>
<td>Ramberg-Osgood curve</td>
<td>669</td>
</tr>
<tr>
<td>Ramberg-Osgood law</td>
<td>1009</td>
</tr>
<tr>
<td>Ramberg-Osgood relation</td>
<td>1007-1009, 1012, 1073</td>
</tr>
<tr>
<td>Ramberg-Osgood strain-strain law</td>
<td>751</td>
</tr>
<tr>
<td>Rayleigh wave velocity</td>
<td>58</td>
</tr>
<tr>
<td>R-curve</td>
<td>5, 9-10, 468, 959, 986-1003</td>
</tr>
<tr>
<td>defined in terms of internal energy</td>
<td>991</td>
</tr>
<tr>
<td>drooping</td>
<td>991-992, 996, 1002-1003</td>
</tr>
<tr>
<td>method of analysis effect</td>
<td>988-989</td>
</tr>
<tr>
<td>rising</td>
<td>1002-1003</td>
</tr>
<tr>
<td>size effects</td>
<td>536</td>
</tr>
<tr>
<td>specimen geometry</td>
<td>471</td>
</tr>
<tr>
<td>three parameter techniques</td>
<td>988</td>
</tr>
<tr>
<td>types</td>
<td>996</td>
</tr>
<tr>
<td>RDS requirement</td>
<td>993, 996, 997</td>
</tr>
<tr>
<td>unique</td>
<td>998-1000</td>
</tr>
<tr>
<td>Reactor pressure tubes</td>
<td>421</td>
</tr>
<tr>
<td>failures</td>
<td>421</td>
</tr>
<tr>
<td>irradiated (see CANDU reactor pressure tubes)</td>
<td></td>
</tr>
<tr>
<td>Reactor pressure vessel</td>
<td>35</td>
</tr>
<tr>
<td>external surface defects</td>
<td>1010</td>
</tr>
<tr>
<td>precracked</td>
<td>731, 733-735</td>
</tr>
<tr>
<td>residual strength prediction</td>
<td>731-733</td>
</tr>
<tr>
<td>steel, J-Δa curve</td>
<td>376-377, 382</td>
</tr>
<tr>
<td>strain distribution</td>
<td>736</td>
</tr>
<tr>
<td>stretch zone measurements</td>
<td>384</td>
</tr>
<tr>
<td>Rectangular bend specimen</td>
<td>289</td>
</tr>
<tr>
<td>geometry</td>
<td></td>
</tr>
<tr>
<td>Reference stress method</td>
<td>478-479</td>
</tr>
<tr>
<td>Remote strain</td>
<td>517</td>
</tr>
<tr>
<td>René N4</td>
<td>757</td>
</tr>
<tr>
<td>chemical composition</td>
<td>758</td>
</tr>
<tr>
<td>crack growth rate</td>
<td>759-760</td>
</tr>
<tr>
<td>solidification substructure</td>
<td>763-764</td>
</tr>
<tr>
<td>René 95 (see also Crack closure, René 95)</td>
<td>193</td>
</tr>
<tr>
<td>chemical composition</td>
<td>193</td>
</tr>
<tr>
<td>crack growth</td>
<td>200-201</td>
</tr>
<tr>
<td>heat treatments</td>
<td>194</td>
</tr>
<tr>
<td>mechanical properties</td>
<td>194</td>
</tr>
<tr>
<td>Residual stress</td>
<td></td>
</tr>
<tr>
<td>crack-tip deformation</td>
<td>943, 946, 948-951</td>
</tr>
<tr>
<td>overload cycle</td>
<td>948-949</td>
</tr>
<tr>
<td>Resistance curve method</td>
<td></td>
</tr>
<tr>
<td>analysis of data</td>
<td>107-109</td>
</tr>
<tr>
<td>compact specimen</td>
<td>105-107, 109-111</td>
</tr>
<tr>
<td>concept</td>
<td>105</td>
</tr>
<tr>
<td>crack configuration used to verify uniqueness of curves</td>
<td>112</td>
</tr>
<tr>
<td>Dugdale model</td>
<td>105-106</td>
</tr>
<tr>
<td>failure loads</td>
<td></td>
</tr>
<tr>
<td>single-edge crack tension specimens</td>
<td>112</td>
</tr>
<tr>
<td>middle-crack tension specimen</td>
<td>107, 111</td>
</tr>
<tr>
<td>single-edge-crack tension specimen</td>
<td>111-112</td>
</tr>
<tr>
<td>three-hold-crack-tension specimens</td>
<td>113</td>
</tr>
<tr>
<td>Retirement-for-cause (see also Fracture mechanics)</td>
<td>206-207</td>
</tr>
<tr>
<td>Rice's displacement derivative representation of weight function</td>
<td>302</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Curry</td>
<td>11, 13, 15</td>
</tr>
<tr>
<td>Roller correction factor</td>
<td>596</td>
</tr>
<tr>
<td>Root radii</td>
<td>765</td>
</tr>
<tr>
<td>R-ratio, effects for short and long cracks</td>
<td>888-890</td>
</tr>
<tr>
<td>Runge-Kutta-Gell technique</td>
<td>55-56</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Sealing cables</td>
<td>734-735</td>
</tr>
<tr>
<td>Secondary cracking</td>
<td>760, 762</td>
</tr>
<tr>
<td>Secondary stress</td>
<td>476-477</td>
</tr>
<tr>
<td>Self-similar crack propagation</td>
<td>301</td>
</tr>
<tr>
<td>Semicohesive zone model</td>
<td>6,8</td>
</tr>
<tr>
<td>Service failure analysis</td>
<td>51</td>
</tr>
<tr>
<td>Shear crack</td>
<td>825</td>
</tr>
<tr>
<td>growth, sympathetic</td>
<td>129</td>
</tr>
<tr>
<td>profile</td>
<td>561, 574</td>
</tr>
<tr>
<td>Shear strain, overload cycles</td>
<td>939, 945</td>
</tr>
<tr>
<td>Shear stress</td>
<td></td>
</tr>
<tr>
<td>computer-generated contours</td>
<td></td>
</tr>
<tr>
<td>mixed-mode loading</td>
<td>122, 126</td>
</tr>
<tr>
<td>failure, mixed-mode loading</td>
<td>128-129</td>
</tr>
<tr>
<td>Shear zone</td>
<td></td>
</tr>
<tr>
<td>absence</td>
<td>568</td>
</tr>
</tbody>
</table>
characteristics, 561
formation, 563
relative orientation, 560, 564-567
size variation, 561, 570-573
stable cleavage microcrack within, 569, 578
Shell parameter, 732
Ship
frame structure, brittle crack propagation
and arrest, 51–60
hull damage
damage description 68–70
static analysis, 68–71
Short cracks, 881, 896
R-ratio effects, 888–890
Side grooves, 75, 611
Sigmoidal equation, 210
Silicate particle, initiation of cleavage facet, 531, 534
Similitude, 934–935, 951, 953
Single-edged crack, 151
Single-lap joints, testing, 283
Singular intensity factor, 278
Singularity field, 823
SINH equation, 209
SINH model, 207, 209–210
fitting data, 212
interpolative capabilities, 215
Slag/lack-of-fusion, 1025, 1026
cycles to failure, 1047–1048
discontinuities, 1034, 1036
analysis, 1043, 1045–1046
total fatigue life versus initial stress intensity, 1045
Sliding crack surface interference, 821, 829–830, 832
Small-crack effect, 897
Small cracks, 896
Small-scale-yielding model, 1070, 1073–1074
SM 80P steel, tensile properties, 732
Specimen deformation, 589–593
Specimen failure probability, 20, 29
Specimen geometry
ductile-to-brittle transition effect, 569, 574–575
effect of change on compliance, 591–592
Spectrum loading, 765
fatigue tests, 778–779
Spring constants, 53–54
Spring model, axially compressed columns, 805–807
State of stress, 825
Static analysis, ship hull damage, 68–71
Static fracture tests, 957
Stationary crack, linear elastic, 823
Statistical failure, 164
Steels, 881
chemical composition, 518, 600, 623, 883
cleavage, crack-tip failure, 11, 13–17
correlation of Charpy V-notch energy absorption and plane-strain fracture toughness, 454–456
crack-arrest experiments, 77
crack growth rate versus applied stress intensity factor, 884–886
high-strength, 347
J-T diagram, 629, 636–637
Mode III crack growth, 826
panels, J-integral values for small cracks, 151–162
crack mouth instrumentation, 157
loading methods used for tension and four-point-bend tests, 155–156
material, 153–155
stress-strain curve, 153
tests, 155–158
theoretical background, 152–153
pop-in, 627
quenched and tempered, 333
shaft, fatigue failure, 451
tensile properties, 518, 883, 884
Stiffened sheet
crack, infinite sheet, 251
deck crack, 248–249
equations for determining fastener forces, 248–249
half-space, subjected to concentrated loads, 256–257
infinite plate subjected to point loads, 256
influence coefficients, 249–253
mechanical model, 247–248
solution method for integral equations, 253–254
stress components, 256–257
stress-intensity factors, 254–255
uncracked half-plane, 252
Stiffness, 805–806
Strain, 730, 934
ahead of crack tip, 940, 946
distribution
along uncracked and cracked sides, 736
cyclic loading, 940–941, 946
overload cycle, 939–940, 944–945
effective, ahead of crack tip, 940, 945
gross
drop and characteristic defect lengths, 497
relationship with COD, significance, 490–491
versus COD, 497, 499
weld metal overmatching effect, 494–496
Lüders, 151, 154, 1009
measurement, 517, 521
remote, 152, 158–160
Strain energy density function, 716, 719
Strain energy release rate, 301, 322-323
 angular dependence, 322
 sinusoidal characteristics, 324-325
Strain hardening, 376, 488
Strain rate, 454
Strain-rate effects, 443
Strain work density, 736
Stress, 730
 boundary force method, 275
 crack initiation and, 444
 critical, 164-165
 failure, tangential criteria, 132-133
 Griffith relation, 19
 gross, weld metal overmatching effect, 494-496
Stress analysis, 103, 665
Stress-concentration factor, 259
Stress corrosion crack growth rate, 851-852
Stress eigenvalue, 704-705, 707
Stress field
 curving crack, 86-99
 changes in fringe order error and leading coefficients, 92-93
 experimental and data reduction procedures, 90-93
 fringe pattern over data acquisition region, 92-93
 isochromatic fringes, 86
 opening and shear mode stress intensity factors, 94-95
 specimen geometry and loading, 90
 dynamic, 87-89
Stress fringe multiplication system, 702
Stress functions, 87-88
 arc bend specimens, 287-288
 boundary force method, 273-274
 elasticity, 259
Stress intensity, 391
 correction factors, 269-272
 effective initiations, 75
 gradient, high-temperature crack-arrest toughness, 75
nucleating, 14
Stress-intensity factors, 21, 23, 36-37, 86, 247, 254-255, 259, 275, 648-649, 699, 765, 1050, 1070
additive form, 784
analytical, 767-768, 771-773
 formulation, 767-768, 771-772
 solution of integral equations, 772
apparent, 705-706
applied, values, 887
brittle specimens, 424
calculated and experimental, 1066-1068
calculation from explicit weight functions, 319, 323
cantilever beam specimens, 846
coefficients, Mode I, 1088
collapse-modified strip yield model, 960
corrected, 705-706
correlation with CTOD, 456
crack growth rate as function of, 851-852, 904-907
 cracks at root radii, 772-773
 crack tip, 254, 1030, 1033
 crack tip strains as function of, 939, 943
critical, 784
 mixed-mode loading, 129, 131
d-c potential-drop technique, 339
dynamic, 56-57, 410
eccentric loading effects, 327-329
eccentric supporting effects, 328-329
edge crack, 254-255
effective, 913, 934
 comparison of derived and measured, 952
 crack growth rate versus, 905, 908-909
 threshold, 891
value, 186
effect of geometric stress concentration, 514-515
effects of loading and supporting eccentricities, 312-313
elastic-bolt analysis, 848
final, elastic-bolt and final-load analyses, 854, 857-858
function of applied load and weight functions, 303-304
Green's function, 302
initial, 849
 versus fatigue initiation life, LOP discontinuities, 1045
 versus fatigue life, LOP discontinuities, 1043-1045
linear elastic fracture mechanics, 207, 688
maximum
 closure load dependence, 196
 relationship with percent closure, 196-197
mixed mode (see also Explicit weight functions)
 Mode I, 773, 778, 822
 Mode II, 89, 328, 773, 778, 1087-1088
 Mode III, 823
normalized, 290, 294-295, 319, 322
 opening and shear mode, 88, 94-95
parabolic fatigue cracks, 1057
plastic zones, 184-185
quasi-static, 410
radial line method, 275-277
range
 calculation, 884
 effective elastic, 1071
 plastic, 824
threshold testing, 193
relative error, 267-268
shear mode, 89
static, 58, 60
dynamic fracture toughness and, 68
threshold (see K_{ISCC} testing procedure)
variation with distance from edge of land, 774-777
versus crack length, 890-891
WOL specimen, 846
zero-to-tension stress, 1042
Stress-strain curve, 1073
AS33B steel, 967-968
cyclic, 626, 628-630
monotonic, 626, 628-630
prestrain history effects, 630
normalized, 1009, 1014
Ramberg-Osgood approximations (see also
Ramberg-Osgood relation), 1009, 1012
showing approximation of data by power
law, 387
slope, 386
steels, 601
tension specimens, 153
welded joint, 488-490
wide plates, 968
Stress-strain law, 1007-1014
influence of load-displacement and loading
parameter, 1009, 1013
Stress tensor, 946
Stretch zone, 374, 522
characteristics, 561
relative orientation, 560, 564-567
width, 561, 563, 569, 576, 605
Strip yield model, 109-110, 477-478
boundary-integral equation analysis, 115-116
collapse-modified, 956-983
CTOD, 959
derivation, 959-961
disadvantage, 959-960
failure analysis diagram, 960-961
implications to general analysis proce­
dures, 983
incorporation of resistance curve, 961-962
materials, 963-968
maximum load toughness, 972, 975-978
plastic collapse solutions, 972
prediction of test results, 968, 972-974
specimen orientations, 971
use of maximum load toughness, 962-963
wide plate and burst tests, 964, 969-970
finite-element analysis, 116-117
Supporting eccentricity, stress intensity factor
effects, 312-313, 328-329
Surface cracks, 151, 505
Surface defects, 686
Surface-type crack cases, model geometry,
792-793

T
2024-T3 aluminum, ductile fracture, 10-11
2024-T351 aluminum alloy
 crack growth from corner flaws in open-
 hole specimens, 1063-1064
 marker bands, 1053
 plates, crack propagation test program,
 1063
7075-T6 aluminum alloy, 223-235, 766
 chemical compositions, 883
crack arrest toughness
 statistical data, 233
 versus crack jump, 231, 234-235
 versus initiation stress intensity, 230-234
 versus normalized final crack length, 232, 234
 versus normalized remaining ligament, 232, 234
 versus specimen thickness, 231-232
crack growth rate versus stress intensity fac­
tor, 884, 888
 experimental procedure, 224-228
 marking of arrested crack front, 226
 properties, 228
 run-arrest test record, 228-229
 specimen dimensions and arrest toughness
 values, 227
 specimen geometry, 225-226
 specimen loading arrangement, 225
 stress-strain curve, 228
tensile properties, 884
7075-T7351 aluminum alloy, beach marks
due to maneuver loading, 1053
Tearing, 986
 fibrous, 542
 specimen geometry, 471
Tearing instability, 1005, 1007
 analyses, sources of inaccuracy, 1007, 1009
 calculated stresses, 1019-1020
 load normalized by experimental load,
 1015, 1017
Tearing modulus, defined, 425
Tearing resistance, 37-38
ASTM A 710 grade A class 3 alloy steel, 155
terms of J-integral, 160
Tensile properties, 385
- AISI 4340 steel, 849
- steels, 883
- 7075-T6 aluminum alloy, 883
- prestrain history effect, 632, 640–644
- type 308L weld metal, 135–136
- type 304 stainless steel, 135–136

Tensile stress, 437–438
- Tension, 120, 151
- Thermal shock, 35

Thickness-averaging compliance techniques, 915–918, 928
- Three parameter technique, contour integral, 988, 1001–1002
- Three-point bend specimens, 301, 390, 611, 667
 - bending moment, 596
 - boundary collocation, 288
 - center roller indentation, 597–598
 - crack growth, 674
 - CTOD data, 519, 523–524
 - eccentric loading conditions, 302–303
 - 2-D finite element mesh, 545
 - geometric analysis, 594
 - geometry and test configuration, 391
 - J-R curve (see J-R curve testing)
 - loading eccentricity, 305–306
 - load-line displacements, 674–675
 - maximum loads, 674–675
 - nomenclatures, coordinates, and constraints, 305, 584
 - notching, 392
 - orientation and dimensions, 523
 - supporting eccentricity, 305–306

Through-type crack cases, model geometry, 790
- Ti-6Al-2Sn-4Zr-6Mo, 898, 900
- ΔT-integral, 723–725
- Titanium alloys, 992, 927–928
- Titanium aluminum alloys, crack growth rates, 914–915

Torsional failure, 827–829
- Torsional stiffness, 807–809
- Transition behavior, 622
- Trapezoidal rule, 603
- Tubular joint, 505–506, 810–811
- Tunneling, 583, 587
- Type 308L weld metal, tensile properties, 135–136
- Type 304 stainless steel
 - tensile properties, 135–136
 - welded pipe (see Ductile fracture, welded pipe)
- Type 316 stainless steel
 - chemical composition, 623, 965
 - creep behavior, 872, 874
 - creep-crack growth, 867–877

fracture toughness, 633, 967
- J-R curves, 627, 634–635
- J-T diagram, 629, 636–637
- mechanical properties, 633, 966
- monotonic stress-strain curves, 627, 630
- predicted and test results, 981
- stress-strain curve, 968

Type 348 stainless steel, irradiated
- fracture toughness, 611–620
- load drop analysis, 618
- load limit, 619
- test procedures, 612–613
- unloading-compliance and effective modulus, 614–617
- J-R curves, 402–403

Ultimate tensile strength
- SM 80P steel, 732
- temperature dependence, 167–168, 560

Ultrasonic techniques, crack closure measurement, 919
- Underload, 937–938, 941
- UNLOAD, 398
- Unloading compliance, 390, 583, 611
 - effective modulus and, 614–617
 - load versus load-line crack opening displacement, 652
 - techniques, 916

Variable-amplitude loading, 821, 838–840, 934

Viscoelastic model, 701
- Void growth rate, 563

Warm prestressing, 38–39, 47–48
- Weakest-link theory, 11, 13, 19, 26, 536, 552
- Weibull distribution statistics, 544
- Weight functions (see Boundary collocation)
- Welded joint, 485, 957
 - behavior in tension, 488–490
 - defective
 - deformation modes, 486–487
 - plasticity, 486
 - stress-strain curves, 488–489
 - overmatched, COD-ε relationship, 493, 495
 - stress-strain curves, 488–490
- Weld imperfections, 468
- Welding, 1025
- Weldments, 443, 555, 730
 - fabrication discontinuities, 1025
fatigue initiation life, 1032
fatigue life, 1032
optical micrograph, 558-559
specimen geometry, 469-470
testing, CTOD approach, 469-471
Weld metal, 19
behavior in tension, 486-488
chemical composition, 21, 1026-1028
critical CTOD, 560
defformation, 486
interaction between stress-strain and COD, 489
matching
 COD effect, 499
tolerable defect sizes, 493, 497
mechanical properties, 1027
overmatching, 485-501
 COD-e relationship, 493, 498
effect on gross strain and stress and COD, 494-496
gross section yielding, 501
materials and weldments, 491-492
specimen preparation and testing, 491-492
tensile properties, 559
Weld seam, crack velocity beyond, 62
Wide plates, 505
bending, 516-534
 absence of delamination, 528, 533
 chemical inhomogeneity of microstructure, 527, 530-531
cleavage facets, 528, 533
crack geometries, 520
equivalent versus critical crack length, 526-528
fractography, 527-531
inclusions, longitudinal and transverse sections, 529
material, 517-518
stretch zone, 522
test data, 524-525
burst tests, 964, 969-970
containing precracked surface notches, 507
large, 506-507
off-sectioning, 508
small, 507-508
tests, 51
 CTOD measurements, 517, 519, 521-522
 procedure, 517, 519
 specimen geometry, 517, 519
 William’s stress function, 286-289
 Wilson bilinear curve, 152-153
 WOL specimens
 fracture surfaces, 855
 statistical analysis of final stress intensity factor, 855-856, 862
 variance of final stress intensity factor, 854-855, 859-861
 WOL test, 846-847, 850-856
 Workhardening, 166
Y
 Yield strength
 absorbed energy versus temperature, 537-538
 AISI 4340 steel, 849
 A36 steel, 537
crack initiation threshold dependence, 444
final stress-intensity factor relationship, 854, 859
function of temperature, 560
grain size, 537-538
SM 80P steel, 732
toughness dependence, 29-30
Yield stress
 fictive, 387
 relationship with fracture toughness, 174-175
temperature dependence, 167-168
Yield zone dimension, 786
Young’s modulus, 425, 586-587
Z
 Zircaloy-2, 419
 chemical composition, 420
 fracture toughness, 427, 434-436
 hydride morphology, 434
 J-R curves, 436
 specimens, 423
 Zirconium alloys, Young’s modulus, 425
Zr-2.5Nb, 419
 chemical composition, 420
critical crack length, 432
 cutting diagram of specimens, 422
fracture surface, 427-428
fracture toughness, 427-433
heat treatments, 423
initial tearing modulus, 433
initiation toughness, 433
J-R curves, 427, 429-431
tensile properties, 426