Subject Index

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced sensor systems</td>
<td>for investigating surficial deposits for surface mining operations, 133, 136</td>
</tr>
<tr>
<td>Aerial photography</td>
<td>characteristics of, for remote sensing, 72-73</td>
</tr>
<tr>
<td></td>
<td>for construction and postconstruction monitoring in pipeline investigations, 13-14</td>
</tr>
<tr>
<td></td>
<td>cost-effectiveness of, 70</td>
</tr>
<tr>
<td></td>
<td>for the detection of solution features, 108, 110</td>
</tr>
<tr>
<td>Aerial Photo Summary Record System (APSRS)</td>
<td>82</td>
</tr>
<tr>
<td>Agricultural Stabilization and Conservation Service</td>
<td>241</td>
</tr>
<tr>
<td>Airborne Goodyear electronic mapping system/synthetic-aperture radar</td>
<td>comparison of, with satellite-borne Seasat/synthetic-aperture radar imagery, 163-182</td>
</tr>
<tr>
<td>Airborne imagery</td>
<td>for monitoring river crossings and bank stability, 14</td>
</tr>
<tr>
<td>Airborne sensing</td>
<td>application of, to soil moisture studies, 18</td>
</tr>
<tr>
<td>Airborne thermography</td>
<td>3</td>
</tr>
<tr>
<td>Alluvial dolines</td>
<td>103</td>
</tr>
<tr>
<td>American National Standards Institute (ANSI)</td>
<td>230</td>
</tr>
<tr>
<td>American Society for Photogrammetry and Remote Sensing</td>
<td>258</td>
</tr>
<tr>
<td>Archived imagery</td>
<td>costs of, 2</td>
</tr>
<tr>
<td>Archived multipled data sets, value of</td>
<td>163-182</td>
</tr>
<tr>
<td>Argos satellite system</td>
<td>207-209, 218-219</td>
</tr>
<tr>
<td>ASTM Committee D-18</td>
<td>1, 4</td>
</tr>
<tr>
<td>Australia, Bowen Basin</td>
<td>evaluation of geotechnical parameters in, 123-124, 129</td>
</tr>
<tr>
<td>Automation of interface between remote-sensing data and computer-assisted design</td>
<td>179, 225</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank stability</td>
<td>assessment of, in pipeline investigations, 14</td>
</tr>
<tr>
<td>Base maps</td>
<td>characteristics of, for remote sensing, 77</td>
</tr>
<tr>
<td>Basement-block hypothesis</td>
<td>in lineament analysis, 55, 67</td>
</tr>
<tr>
<td>Bowen Basin (Queensland, Australia)</td>
<td>evaluation of geotechnical parameters in geological background, 123-124 structural lineaments, 124, 129 tertiary deposits, 129</td>
</tr>
<tr>
<td>Box gullies</td>
<td>19</td>
</tr>
<tr>
<td>Bureau of Land Management (BLM)</td>
<td>245</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>application of remote sensing data to geotechnical investigations in Ontario, 9-42</td>
</tr>
<tr>
<td></td>
<td>sources of remote sensing data in, 257-258</td>
</tr>
<tr>
<td>Carbonate rock</td>
<td>geotechnical significance of soluble forms of metastable forms of solution features, 103-104 forms of solution features, 100 geotechnical problems, 104-105 locating potential ground subsidence in, 99-118</td>
</tr>
<tr>
<td>China</td>
<td>estimation of reservoir submerging losses using CIR aerial photographs at Ertan hydropower station, 89-98</td>
</tr>
<tr>
<td>Co-estimation</td>
<td>141</td>
</tr>
<tr>
<td>Co-kriging</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>application of, to analyzing multiple remote sensing data sets, 138-150</td>
</tr>
<tr>
<td>Collapse dolines</td>
<td>104</td>
</tr>
<tr>
<td>Color-infrared (CIR) film</td>
<td>(see also Spring color-infrared photography) estimation of reservoir submerging losses using, 89-98</td>
</tr>
</tbody>
</table>

271
use of, for aerial photography, 72–73
uses of, 71
Computer-assisted design, automation of interface between remote sensing data and, 179, 225
Copper cable, long-term stability of, near nuclear waste, 217
Cross-correlation voltage, 153

D
Data set procurement and merging, 82–84
Data transmission (see also Remote data transmission systems)
in geotechnical applications, 214
use of meteorburst radio technology, 220
use of microwave systems for, 220
use of satellites for, 218–220
use of telephone for, 218–219
Defense Meteorological Satellite Program (DMSP), 245
Detectability, 73
Digital data processing, 1
Digital elevation model (DEM), 194
Digital image processing system (DIPS)
in data analysis, 193
to update land-use and land-cover data of GIS with, 196
Digital simulation models, in lineament analysis, 61, 63
Digitized data, for computerized evaluations and processing, 225
Dolines, 100
types of, 103–104

E
Edge-enhancement of images, in recognizing fracture systems, 11
Electromechanical scanner system imagery, for historic waste-site use and characterization, 73, 77
Enhanced Landsat multispectral scanner (MSS), for pipeline investigation, 11
Enhancement techniques, 1
for preliminary cross-country pipeline routing studies, 11
Environmental Monitoring Systems Laboratory (EMSL), 81–82
characterizations and historic compilations, 83
EROS Data Center (EDC), as source of remote sensing data, 79, 82, 245–246
Ertan hydropower station (China), estimation of reservoir submerging losses using CIR aerial photographs at, 89–98

F
Federal Geographic Exchange Format, 229
Federal Interagency Committee for Digital Cartography (FICDC), 229
Fiber-optic cable, use of, in geotechnical monitoring, 217
Fourier optical transform, 3
Fractures
detection of near-surface in pipeline investigations, 12
effect of permeability and leakage on flow in aquifer systems, 46

G
General Services Administration, 257
Geographic information system (GIS)
land use and land cover data in, 192–196
and need for up-to-date database, 2
Geological applications, field evaluation of satellite remote sensing systems for, 197–200
Geological conditions, effect of, on effectiveness of remote sensing, 115–116
Geosat Committee’s 1979–1984 Joint NASA/Geosat Test Case Project, 1, 197
Geostationary Environmental Operational Satellite (GOES), 4, 210, 218–220
Geostationary meteorological satellite (GMS), 209
Geotechnical applications, 4
automation of instruments in, 214–215
criteria for selecting remote data telemetry methods for, 213–222
optical Fourier analysis of surface features of interest in, 151–162
of remote sensing data, in Ontario, Canada, 9–42
selection of sampling sites, in pipeline investigations, 12–13
of U.S. government remote sensing programs, 183–191
Glaciofluvial sediments, subdivision of, 17–18
GOES satellite system, 4, 210, 218–220
Grid coding, in image subtraction, 152, 154, 155
Ground subsidence, locating potential, in carbonate rock, 99–118
Ground-water flow system, analysis of regional, 61, 63

H
Higher spatial resolution, 1
Historic waste-site use and geotechnical characterization
characteristics of remote sensor data, 72
aerial photography, 72-73
available map products, 78
base maps, 77
electromechanical scanner system imagery, 73, 77
characterization capabilities of remote sensor data, 70
conclusions of, 84, 88
data requirements for site characterization, 70-71
data set procurement and merging, 82-83
guidelines for, 83-84
limitation of remote sensor data, 71-72
need for, 69-70
presentation of data, 84
sources and characteristics of available and historic data
NASA photography and imagery, 79, 81
U.S. Army Corps of Engineers, 82
U.S. Department of Agriculture aerial photography, 79
U.S. Environmental Protection Agency, 81-82
U.S. Geological Survey aerial photography, 78-79
Hydrogeological information, 3
Hydrological data analysis, in lineament analysis, 55, 59

I
Image enhancement techniques, 1, 11
Image processing, during geographic information system (GIS) updating, 194
Image subtraction (IS), 2, 151, 152-153
input images in, 162
Infrared aerial photography, for pipeline investigations, 10
Instrument automation, in geotechnical applications, 214-215
International Organization for Standardization (ISO), 230

J
Jet Propulsion Laboratory (JPL) (Pasadena, CA), 197
Joint NASA/Geosat Test Case Project, 197-200
Joint-transform correlation (JTC), 2, 151, 153, 155, 160-161
function of, 3
input images in, 162
method of, 153
usefulness for geotechnical applications, 162

K
Kriging estimate, 141

L
Landsat-based land cover mapping, for pipeline investigation, 11-12
Landsat data, digital analysis of, 3
Landsat Ground Station Operator's Working Group (LGSOWG), 228-229
Landsat imagery, for lineament mapping, 63, 66
Landsat/multispectral scanner (MSS) system, 1
advantages of, 77
use of, to examine solution features, 110
Landsat thematic mapper (TM), for investigating surficial deposits for surface mining operations, 133, 136
Land use and land cover data, in a geographic information system (GIS), 192-196
Lineament mapping
for igneous intrusions, 22, 31
Landsat imagery for, 66
Skylab photography for, 63, 66
usefulness of, in geologic and hydrologic investigations, 46
use of thermal IR line scanning for, 113-114
Lineaments
analysis of regional ground-water flow system, 61, 63
continuity of, 54, 66
criteria for defining significant, 48, 51
determination of structural, from satellite photography, 124, 129
distribution of frequency, 54-55
effect of, on ground-water systems, 46-47
frequency of, 54
geological and hydrological perspective, 63
hydrological data analysis of, 55, 59
methods of analyzing, 48, 51
relationship of, to basement tectonics, 47-48
seismic data analysis of, 59, 61
use of basement-block hypothesis in analyzing, 55, 67
use of Landsat imagery and skylab photography in analysis, 47
Lithological mapping, for igneous intrusions, 22
M

Mathematical simulation modeling, use of, in lineament analysis, 61
Meteorburst communication system, 4, 203-205
Meteorburst radio technology, use of, for data transmission, 220
Microwave radiometry, for the detection of solution features, 115
Microwave systems, data transmission over, 220
Mineral aggregates and other surface deposits, mapping of, 15, 17
Mine roof instability, use of remote sensing data for evaluating potential for, 37, 40
Mining operations
remote sensing applications in, 226
satellite-based investigation of the significance of surficial deposits for surface, 122-136
Multiple-band information registration, 193
Multiple-date information registration, 193
Multiple remote sensing data sets, application of spatial statistics to analyzing, 138-150
Multiple-source spatial information registration, 193
Multispectral image analysis
limitations of, 77
in remote sensing, 199-200
Multispectral scanners, for the detection of solution features, 110

N

National Aeronautics and Space Administration, 257
photography and imagery, characteristics of, 79, 81
Shuttle Imaging Radar (SIR) Program, 1
National Archives and Records Service, 257
National Cartographic Information Center (NCIC)
as source of remote sensing data, 79, 246-255
National Committee for Digital Cartographic Data Standards (NCDCDS), 229
National High Altitude Photography Program (NHAP) Data, geotechnical applications of, 1, 184-185
National Map Accuracy Standards, 78, 81
National Oceanic and Atmospheric Administration, 242-243
advanced very-high-resolution radiometer (AVHRR) imagery, 124
to determine lineament distribution, 124
resolution of sensor, 132
uses of sensor, 124
availability of historic climatological data from, 242-243
National Park Service (NPS), 256
Natural color films, use of, for aerial photography, 73
Northern Louisiana Salt Dome area, terrain and image characteristics of, 165-166, 168, 172, 176, 178

O

Ontario, Canada, application of remote sensing data to geotechnical investigations, 9-42
Optical diffraction analysis (ODA), 2
basic methods of, 2-3, 151
technique of, 151-152
Optical Fourier analysis of surface features of interest in geotechnical engineering, 151-162
Orthophotomapping, use of, to estimate reservoir submerging losses at Ertan Hydropower Station (China), 95

P

Panchromatic films, use of, for aerial photography, 72
Pipeline investigation
conclusions and recommendations for, 15
construction and postconstruction monitoring, 13-14
detection of high water table, 13
detection of near-surface fractures, 12
detection of subsurface drainage tiles, 13
effects of soil compaction, 15
enhanced Landsat multispectral scanner (MSS) data, 11
Landsat-based land cover mapping, 11-12
preconstruction mapping and regional route selection, 10-11
river crossings and bank stability, 14
route selection with spring airborne imagery, 12
Seasat SAR radar data, 11
selection of geotechnical sampling sites, 12-13
themetic mapper (TM) data, 11
usefulness of remote sensing data in, 10-15
Platform terminal transmitters (PTT), functions of, 208-209
Q
Quaternary geology, investigations of, 17

R
Radar imaging, geomechanical potential for, 133
Reconnaissance tools, value of SLAR and SAR as, 178
Remote data transmission systems, 4, 203, 215
Argos system, 207-209
criteria for selecting, for geotechnical applications, 213-222
description of, 184-189
geosationary meteorological satellite systems, 209-211
and local data transmission, 215, 217-218
meteorburst, 203-205
overview of, 203-212
potential for geotechnical applications of, 1
and remote data transmission, 218-220
satellite systems, 205-207
Remote sensing
abbreviations and acronyms used in, 263-265
application of data, to geotechnical investigations in Ontario, Canada, 9-42
application of spatial statistics to analyzing multiple data sets, 138-150
automation of interface between computer-assisted design and, 179, 225
case history in the use of, for studying effects of lineaments, 46-68
characteristics of, 70, 72-73, 77-78
comparison of airborne GEMS/SAR with satellite-borne Seasat/SAR radar imagery, 163-179
cost-effectiveness of, 99-100
defining quality of, 226-227
descriptions of data, 184-189
to estimate reservoir submerging losses at Ertan Hydropower Station (China), 89-98
for evaluating mine roof instability, 37, 40
factors influencing effectiveness of conditions during data acquisition, 117
geological conditions, 115-116
image interpretation, 118
image processing, 117
resolution of sensor, 116-117
field evaluation of satellite system for geological applications, 197-200
future developments in, 231-232
gеотехническое применение, 3-4, 225-226
historic waste-site use and geotechnical characterization, 69-98
limitations of data, 71-72
location of potential ground subsidence and collapse features in soluble carbonate rock by, 99-118
optical Fourier analysis of surface features of interest in geotechnical engineering, 151-162
potential for geotechnical applications of, 1
satellite-based investigation of surficial deposits for surface mining operations, 122-137
selection criteria for data, 227
sources of data
Agricultural Stabilization and Conservation Service, 241
American Society for Photogrammetry and Remote Sensing, 258
Bureau of Land Management (BLM), 245
in Canada, 257-258
Defense Meteorological Satellite Program (DMSP), 245
General Services Administration, 257
National Aeronautics and Space Administration, 257
National Archives and Records Service, 257
National Oceanic and Atmospheric Administration, 242-243
National Park Service (NPS), 256
Soil Conservation Service (SCS), 242
Tennessee Valley Authority, 257
U.S. Army Corps of Engineers, 243-245
U.S. Department of Agriculture, 241-242
U.S. Department of Commerce, 242-243
U.S. Department of Defense, 243-245
U.S. Department of the Interior, 245-255
U.S. Environmental Protection Agency, 256-257
U.S. Forest Service (USFS), 241-242
U.S. Geological Survey (USGS), 245-255
Wallops Flight Center, 257
standardization of collection and transmission of data, 228-230
technological advances in the field of, 225-226
updating of data base for geographic information system, 194, 196
use of satellites for, 123-136
Remote sensing specialist, responsibilities of, 181-182
Reservoir submerging losses, estimation of, using CIR aerial photographs, 89-98
Ridgway Dam project, case history of, 221
River crossings, assessment of, in pipeline investigations, 14
Root-mean-square (rms) method, use of, to determine land-use map accuracy at the Ertan Hydropower Station (China), 96-97

San Justa Dam and Dike, case history of, 221
Satellite-based investigation of the significance of surficial deposits for surface mining operations, 122-136
Satellite-borne Seasat/SAR radar imagery, comparison of airborne GEMS/SAR with, 163-182
Satellite imagery, 1
use of, for pipeline investigations, 11-15
Satellite remote sensing systems, field evaluation of, for geological applications, 197-200
Satellite, use of, for data transmission, 218-220
Seasat SAR (synthetic-aperture radar) data, 2
interpretation of, 3
for pipeline investigation, 11
Seismic data analysis, use of, in lineament analysis, 59, 61
Sensor resolution, effect of, on effectiveness of remote sensing, 116-117
Shortwave infrared (IR) thematic mapper (TM) spectral bands, 1
Shuttle imaging radar
geotechnical applications of, 188-189
for investigating surficial deposits for surface mining operations, 132-133
Shuttle Imaging Radar (SIR) Program, 1
Side-looking airborne radar, 1
gootechnical applications of, 185, 188
value of, as a reconnaissance tool, 178
Skylab photography, for lineament mapping, 63, 66
Snow-telemetry (SNOTEL) system, 203, 204-205, 220
Soil compaction, effects of, in pipeline investigations, 15
Soil Conservation Service (SCS), 242
Soil moisture studies, application of airborne sensing to, 18
Solution dolines, 103
Solution features
development of metastable forms of, 103-104
distinct forms of, 100
methods of locating, 105, 108
remote sensing research concerned with the detection of, 108, 110-111, 113-115
review of remote sensing research with the detection of, 108, 110-111, 113-115
Solution pipes, 100
Solution widened joints, 100
Spatial Data Exchange Standard (SDES), 229
Spatial resolution, 116
Spatial statistics, application of, to analyzing multiple remote sensing data sets, 138-150
Spectral resolution, 116-117
inferiority of SPOT satellite to thematic mapper in, 133, 136
Spring color-infrared photography (see also Color-infrared film)
for detecting high water table, 13
for detecting near-surface fractures, 12
for detecting subsurface drainage tiles, 13
to detect poor crop growth, 15
to monitor new river bank growth, 14
route selection for pipeline using, 12
for selecting geotechnical sampling sites, 12-13
Subsidence dolines, 104
Subsurface gravel search, use of remote sensing investigations for, 17
Surface drainage tiles, detection of in pipeline investigations, 13
Surficial deposits, satellite-based investigation of the significance of, for surface mining operations, 122-136
Swallow holes, 100
Synchronous meteorological satellites (SMS), 209
Synthetic-aperture radar (SAR), 1
value of, as a reconnaissance tool, 178
Systeme Probatoire d'Observation de la Terre (SPOT), for investigating surficial deposits for surface mining operations, 133, 136

T
Telephone, use of, for data transmission, 218
Tennessee Valley Authority, 257
Thematic mapping (TM)
capabilities of, 198
interpretation of data, 3
for pipeline investigation, 11
spectral resolution of, 133, 136
for surface mining operations, 133, 136
Thermal contouring, as enhancement technique, 111
Thermal infrared imagery
for detecting subsurface drainage tiles, 13
for investigating surficial deposits for surface mining operations, 129, 132
Thermal infrared line scanning
for detection of solution features, 110-111, 113-114
for locating potential ground subsidence in carbonate rock, 110-111, 113-114
Thermal ratioing, as enhancement technique, 111
Thermographic mapping
conclusions regarding, 19
delineation of subsurface gravels, 18-19
delineation of surficial materials, 19
geology of the study site, 17-18
of mineral aggregates and other surface deposits, 15, 17

U
UHF radio, for data transmission, 217-218
U.S. Army Corps of Engineers, 243-245
aerial photography of, 82
U.S. Department of Agriculture, 241-242
characteristics of aerial photography of, 79
U.S. Department of Defense, 243-245
U.S. Department of the Interior, 245-257
U.S. Environmental Protection Agency (EPA), 256-257
characteristics of, 81-82
National Contingency Plan requirements of, 69

V
Visible infrared and thermal data, 3

W
Wallops Flight Center (Virginia), 257
Waste disposal in igneous intrusions
conclusions regarding, 31
lineament mapping, 22, 31
lithological mapping, 22
site evaluation for, 19, 22
surficial materials, 31
Water table, detection of high, in pipeline investigations, 13