Subject Index

A
ADINA computer program, 74, 77
Aircraft landing wheels, fatigue crack growth, 872–874
analysis verification, 875–876
depth direction of, 881
fatigue life prediction, 874–875
flange wheel damage characterization curves, 879–881
fracture surface observations, 876–878
stress-intensity factors, 869–872
Airworthiness regulations, stiffened-skin structures, 170–177
Alloys
22Ni-Mo-37Cr compact specimens, 74
2024-T3 skins stiffened with 7075-T6 alloy, 182–199
aluminum
2014-T6, 868
6066-T6, 787
7075, 433–436
superalloys
Inconel 718, 800, 883, 907
René 95, 637
Ti-15-3, 604
Aluminum
H-1100, three-dimensional crack-tip deformation, 284–288
weldments, R-curves and maximum load toughness, 298–310
American Welding Society, D1.1 code, 387–388
ANSI standards, B31.3: 375, 387
Application-mode dynamic analyses, wide-plate crack arrest tests, 714–717
Approximate methods, for dynamic crack propagation and arrest, 524
ARREST program for residual strength, 177–199
ASME Boiler and Pressure Vessel Code
Section III, 240
Section XI, 725, 777, 830
ASME standards, B31.3: 387
ASTM standards
A 508-81: 832
A 533-82: 834
B 645-84: 88
E 8-85: 575
E 208-84a: 547
E 208-85: 88, 570
E 319-85: 393
E 399: 89
E 399-83: 266, 273, 467, 476, 478, 480, 548, 563, 570, 575, 598, 600, 601, 605, 610
E 561-81: 437
E 606-80: 228
E 647-81: 908
E 647-83: 820
E 647-86: 228, 385, 803
E 740-80(86): 43
E 813-81: 331, 336, 337, 437
E 1221: 507, 510, 511, 518–520, 522, 533, 539, 543, 544, 547, 548, 569
Automotive structure, mechanical durability assurance, 220

B
Bending
equation for surface cracks, 597
surface crack growth, 38–39
Birefringent coatings, dynamic fracture behavior of compact crack arrest specimens, 508–511
Boiling water reactor piping, intergranular stress-corrosion cracking, 235–239
BOND program for residual strength, 177–199
Boundary conditions, displacement-controlled, determination, 542–544
Boundary element solution technique for cracks (BEST/CRX), 23
Boundary integral equation
modeling of three-dimensional surface cracks, 21–26
Boundary integral equation—(cont.)
traction, three-dimensional surface crack modeling, 26–29
Boundary-layer effects, stress-intensity factors for corner cracks in rectangular bars, 51
British standards, BS 5447: 88
Brittle fracture, warm prestressing effects, 772–773
Brittle materials, residual strength, 212–213

C
Chemical composition, A533B Class 1 and A508 Class 3 steels, table, 549
Clean steel practice, rail economic life and, 274–275
Closure effects
K-dependent and K-independent, 901–904
prior amplitude effects and, 825
Collapse controlled failure, critical tearing modulus and, 310–312
Compact crack arrest specimens
with birefringent coatings, dynamic fracture behavior, 507
displacement controlled boundary condition determination, 542–544
dynamic fracture properties during propagation and arrest, 532
Component analysis, mechanical durability analysis and, 226
Composition effects, fracture toughness of stainless steel welds, 341–346
Computational modeling, boundary integral equation for surface cracks, 21–29
Constraint, local, three-dimensional elastic-plastic finite-element analysis, 73–86
Contour integral method
edge-cracked panels, 117–121
extraction of stress-intensity factors, 111–113
L-shapted plane elastic bodies, 114–117
Cooperative Test Program for crack arrest, 571
round robin results and, 581–582
Corner cracks, in rectangular bars, stress-intensity factors, 43
CORPORUS program for crack growth, 199–211
GARTEUR program and, 205–207
Crack arrest
compact specimens, 418–423
compact specimens with birefringent coatings, 507
double cantilever beam specimens, 409–417
dynamic fracture properties of A533-B steel, 532
under elastic-plastic conditions, 427
finite-element and line spring models, comparison, 529–531
nuclear reactor vessel steels
analysis and HEDIG gage results, 741–744
analysis and strain gage results, 744–748
stress-intensity factor at arrest, 749–751
pressurized ductile pipe, 441
thick pressure vessels, 772–776
Crack arrestors
deformation history, effect on J-resistance curves, 430–437
toughness values for steels and aluminum alloys, 438
weld-in steel, assessment and design procedure, 436–437
Crack arrest testing, dynamic effects, 586–589
Crack-arrest testing, wide-plate
dynamic finite-element fracture analyses
application-mode dynamic analysis, 714–717
germination-mode dynamic analysis, 717–718
posttest static and stability analysis, 706–714
posttest three-dimensional static analysis, 704–706
specimen geometry, material properties, and instrumentation, 698–701
test conditions, 704
Heavy Section Steel Technology Program
data acquisition, 686
dynamic finite-element fracture analyses, 691
instrumentation, 683–685
loading procedures, 686–688
objectives, 679
specimen configurations, 682–683
test conditions, 681–682
Crack arrest toughness
ASTM-proposed method, 553, 547
crack jump length and, 559–560
ESSO test, 547, 553, 560–561
plane-strain
 crack jump length and, 559–560
 plane-strain fracture toughness and, 563
 temperature effects, 556–557
round robin tests
 arrest toughness determination, 573–575
 loading arrangement, 571
 loading procedure, 572–573
 rapid fracture initiation, 571–572
 recommended modifications, 589–592
 results, 575–589
 specimen geometry, 571
 validity requirements, 575
stress-intensity factors at initiation and, 557–559
temperature effects, 553–556, 576
thickness effects, 561–563
Crack curving, in pressurized ductile pipe, 441
Crack extension, R-curves for predicting, 294–307
Crack front
 –free surface intersection stress behavior, boundary integral equation method, 29–33
 straight, mixed-mode stress-intensity factor computation, 157–158
Crack growth, fatigue (see Fatigue crack growth)
Crack initiation
 local crack-tip loading and constraint factor, 78–86
 in thick pressure vessels, 772–776
Crack jump length, crack arrest toughness and, 559–560
Crack propagation
 diagrams in damage tolerance analysis, 173
 dynamic fracture properties, 532
 effect of reflected stress waves, 512–513
 finite-element and line spring models, comparison, 529–531
 local crack tip loading and constraint factor, 78–86
 mixed-mode dynamic, finite-element model, 406–408
Cracks
 amplitude of stress singular terms, computation, 101
 bolt hole, in rail, 270–271
 elliptical (see Elliptical cracks)
 internal, line spring model, 133–137
 multiple, line spring model, 133–137
 part-through in plates and shells, line spring model, 125
 threshold and nonpropagation under service loading, 818
Crack-tip deformation, three-dimensional, in plastically deformed three-point bending aluminum, 281
Crack-tip diffraction, moiré interferometry, 494–499
Crack-tip opening angle, measurement from displacement record, 475
Crack-tip opening displacement
ductile fracture analyses and, 291–292
measurement with laser-based interferometric strain/displacement gage, 466
Crack velocity
 alternate experimental procedures, 423–425
 critical stress-intensity data generation, 405, 409–423
 measurement techniques, comparison, 685
 standard and ESSO specimens, 563–567
 stress-intensity factors and, 520–521
Critical dynamic stress intensity, generation by combined experiments and analysis, 405, 409–423
Critical tearing modulus, determination, 310–312
CRKGRO computer program, 869, 874–875, 877, 881
Crossover behavior, fatigue crack growth in nickel-based superalloys, 901–904
Cutoff function method
 edge-cracked panels, 117–121
 extraction of stress-intensity factors, 113
 L-shaped plane elastic bodies, 114–117
Cycle-dependent crack growth
 Inconel 718 at high temperature, 914
 modeling, 919
 prediction of growth rates, 920–921
Cylindrical holes in plates, thickness effect on stress concentration factor, 57–64

D
Damage accumulation, in aluminum alloy 6066-T6 cylindrical fatigue specimens, 787
Damage analysis, automotive structures, 228–232
Damage characterization curves, aircraft wheel flanges, 879–881
Damage tolerance
 in power generation industry, 235
 residual strength and crack propagation diagrams, 173
 stiffened-skin structures, 169
 analytical verification, 176–177
 compliance requirements, 171–174
Data acquisition, in mechanical durability analysis, 223
Defects
 acceptance criteria, 387–389
 welds, fitness-for-purpose defect acceptance criteria, 374
Deformation history, effect on J-resistance curve of crack arrestors, 430–437
Delta ferrite particles, effect on fracture toughness of stainless steel welds, 347–351
Detail fracture, in rail, 263–270
Displacements, displacement controlled boundary condition, 542–544
Double-cantilever beams, wedge-loaded, for crack growth monitoring, 253–254
Ductile fracture
 analysis with R-curves and maximum load toughness, 291, 294–307
 crack arrest in pressurized pipe, 441
 crack-tip opening displacement and, 291–292
 in thick pressure vessels, 774
Ductile materials, residual strength, 214–217
Durability, mechanical (see Mechanical Durability)
Dynamic fracture, in compact crack arrest specimens with birefringent coatings, 507
Dynamic strain aging, effects on A533B Class 1 pressure vessel steel, 392, 400–401
 three-dimensional crack-tip deformation, 281
Electric Power Research Institute method,
 R-curves and maximum load prediction, 356
Elliptical cracks
 in bending, stress-intensity factors, 633–636
 three-dimensional weight function method, 620, 621–626
 approximate method, 626–630
 exact solutions, 623–626
Embrittlement, radiation (see Radiation embrittlement)
EnJ method, R-curves and maximum load prediction, 356
ESSO test for crack arrest toughness calculation, 553
data, 560–561
Extraction methods, stress singular terms for cracks and reentrant methods, 111–113

F
Fatigue analysis, automotive structures, 228–232
Fatigue behavior, defect-containing welds, 374
Fatigue crack growth
 aircraft landing wheels, 868
 in aluminum alloy 6066-T6 cylindrical fatigue specimens, 787
CORPUS program, 199–211
 environmentally enhanced cycle-dependent, 914, 920
 environmental, Type 304 stainless steel hydrogen water chemistry effects, 249
 oxygen water chemistry effects, 245–249
 frequency effects at high temperature, 907
 micromechanisms, 917
 at high load ratios in time-dependent regime, 800
 in large-scale yielding, J-integral and, 318
 modeling in cycle- and time-dependent regimes, 919
 near-threshold, in nickel-based superalloys, 883
 crossover behavior, 889–892
 grain-size effects, 892–901
piping components, monitoring, 250–254
in power generation industry, 235
pressure vessels, R-curve data, 362–366
pressure vessel steels and submerged-arc weldments, 830
fracture morphology, 844–866
tests, 838–844
R-curves and, 357–362
R ratio effect, 323, 329
surface cracks
in bending, 38–40
constraint-loss model, 637
in tension, 35–37
Fatigue resistance, defect-containing welds, 383–387
Fatigue threshold, effects of load history and prior amplitude, 818
Fatigue tolerance range, effects of load history and prior amplitude, 818
Federal Aviation Regulation 25.571: 170–174
Finite-element methods
crack arrest in nuclear reactor vessel steels, 724
crack propagation and arrest
dynamic fracture properties in compact crack arrest specimens, 432
line spring model and, 529–531
quasi-static, elastic-plastic analyses, 427, 430–437
displacement solutions, conversion to stress-intensity factors, 670–672
local crack-tip loading and constraint factor, 73–86
mixed-mode
dynamic crack propagation, 406–408
stress-intensity calculations, 153
stress analysis of moving cracks in compact crack arrest specimens, 511–521
stress-intensity factors
contour integral method, 111–113
cutoff function method, 113
three-dimensional
corner cracks in rectangular bars, stress-intensity factors, 45–47
surface cracks, boundary integral equation method, 23
Fitness-for-purpose, defect acceptance criteria for welds with defects, 374, 383–384
Flaw behavior
during large-break loss-of-coolant accidents, 756–764
pressurized thermal shock in thick vessels, 767
Fractography, weld fracture surface morphologies, 341, 350–353
Fracture analyses, dynamic finite-element, of wide-plate crack arrest tests, 691
Fracture, detail, in rails, 263–270
Fracture mechanisms, stainless steel welds, 347–351
Fracture resistance, rail, 272–273
Fracture-safe engineering design, 356
Fracture toughness
computation from dynamic displacement data, 480
plane-strain
crack arrest toughness and, 563
critical stress-intensity factor and, 604–606, 611–617
pressure vessel A533B Class 1 steel
dynamic strain aging, 392, 400–401
neutron irradiation effect, 400
testing, stainless steel welds, 330
Free-surface effects, integrated frozen stress-moiré interferometric analysis, 5
Frequency effects, fatigue crack growth at high temperature, 907
Frozen stress photoelasticity, 6, 10–11

G
GARTEUR program, 205–207
Gas-tungsten-arc welds, fracture toughness, 330
Generation-mode dynamic analyses, wide-plate crack arrest tests, 717–718

H
Hall effect displacement gages, 732, 739, 741–744
h-extension process, 102–103
High temperatures, frequency effect on fatigue crack growth rate, 907
Holography, sandwich holospeckle interferometry, 282–288
Hydrogen level in water, stress-corrosion cracking and, 249–250
I

Inelastic fracture, dynamic, generation of critical stress intensity data, 405
Integrated methods, frozen stress-moiré interferometric analysis, 7–9, 13–16
Interferometric strain/displacement gage, crack-tip opening displacement measurement, 468–469, 471, 474–479
Interferometry
 frozen stress-moiré interferometric analysis, 7–9, 13–16
 sandwich holospeckle, three-dimensional crack-tip deformation, 282–288
Intergranular stress-corrosion cracking, in boiling water reactor piping, 235–238
laboratory monitoring, 239–240
modeling, 255–256
remedies, 239
smart monitors, 256–258
surface crack testing methods, 240–244
water chemistry effects, 245–250
wedge-loaded double-cantilever beam monitors, 253–254
Intergranular stress-corrosion cracking, in boiling water reactor piping, 235–238
laboratory monitoring, 239–240
modeling, 255–256
remedies, 239
smart monitors, 256–258
surface crack testing methods, 240–244
water chemistry effects, 245–250
wedge-loaded double-cantilever beam monitors, 253–254
Intergranular stress-corrosion cracking, in boiling water reactor piping, 235–238
laboratory monitoring, 239–240
modeling, 255–256
remedies, 239
smart monitors, 256–258
surface crack testing methods, 240–244
water chemistry effects, 245–250
wedge-loaded double-cantilever beam monitors, 253–254
Intergranular stress-corrosion cracking, in boiling water reactor piping, 235–238
laboratory monitoring, 239–240
modeling, 255–256
remedies, 239
smart monitors, 256–258
surface crack testing methods, 240–244
water chemistry effects, 245–250
wedge-loaded double-cantilever beam monitors, 253–254
Intergranular stress-corrosion cracking, in boiling water reactor piping, 235–238
laboratory monitoring, 239–240
modeling, 255–256
remedies, 239
smart monitors, 256–258
surface crack testing methods, 240–244
water chemistry effects, 245–250
wedge-loaded double-cantilever beam monitors, 253–254
Intergranular stress-corrosion cracking, in boiling water reactor piping, 235–238
laboratory monitoring, 239–240
modeling, 255–256
remedies, 239
smart monitors, 256–258
surface crack testing methods, 240–244
water chemistry effects, 245–250
wedge-loaded double-cantilever beam monitors, 253–254
Intergranular stress-corrosion cracking, in boiling water reactor piping, 235–238
laboratory monitoring, 239–240
modeling, 255–256
remedies, 239
smart monitors, 256–258
surface crack testing methods, 240–244
water chemistry effects, 245–250
wedge-loaded double-cantilever beam monitors, 253–254

J

J-curves
 J-resistance, crack arrestors, deformation history effect, 430–437
 three-dimensional elastic-plastic finite-element analyses, 73–86
J-integral
 delta J determination, 798–799
ductile fracture analysis with, 291–293
fatigue crack growth in large-scale yielding and, 318
fracture toughness of stainless-steel welds, 336–340
R-curve data beyond J-controlled growth, 357–362

L

Large-break loss-of-coolant accidents, 752–755, 764
Lifetime predictions
 automotive structures, damage analysis and, 228–232
crack growth in nickel-based superalloys, 904
mechanical durability in automotive structures, 220
residual life estimation in nickel-based superalloy René 95, 645–655
smart monitors for intergranular stress-corrosion cracking, 256–258
surface cracks in aircraft landing wheels under service loading, 874–875
three-dimensional effects, 73
Linear elastic fracture mechanics
 fatigue crack growth in aircraft landing wheels, 869–875
 pressurized thermal shock loading of pressurized water reactor steels, 752–755
 three-dimensional problems, integrated optical measurement method, 7–9, 13–16
two-dimensional technology and, 88
Line spring model
 coplanar multiple cracks, 137–149
crack propagation and arrest, finite-element methods and, 529–531
cracks in plates under thermal and residual stresses, 660–664
 internal and multiple cracks, 133–137
 limitations, 150, 657–658
 part-through cracks, 664–667
 part-through cracks in plates and shells, 125
two-dimensional technology and, 88
 theory, 658–660
Load history, effect on fatigue threshold, 818
Loading, crack tip, three-dimensional elastic-plastic finite-element analysis, 73–86
Loads
 bending or tensile, equation for surface cracks, 597
 vehicle, analysis, 223–225
 wheel, effect on rail, 275–276
L-shaped plane elastic bodies, stress-intensity factors, 114–117

M

Manganese silicide particles, effect on fracture toughness of stainless steel welds, 347–351
Material properties
A533-B steel compact crack arrest specimens, 539–542
in mechanical durability analysis, 226–228
Maximum load toughness, R-curve prediction for maximum stress and crack extension, 291
Maximum pressure, pressure vessels, R-curve data, 362–368
Mechanical durability, automotive structures
component analysis, 226
design, 212–223
material properties, 226–228
service data, 223
vehicle loads analysis, 223–225
Mesh refinement, effect on stress-intensity factors for corner cracks in rectangular bars, 51–52
Microstructure, effect on fatigue crack growth of Alloy 718, 892–901
Microvoid coalescence, fracture toughness of stainless steel welds and, 347–351
Models
computational, boundary integral equation for surface cracks, 21–29
constraint-loss, for surface fatigue crack growth, 637
dual-Walker exponent mean-stress, 643–644
intergranular stress-corrosion cracking in piping, 255–256
linear cumulative damage, fatigue crack growth, 801–803, 807–812
line spring (see Line spring model)
one-dimensional, crack propagation and arrest, 525–531
Modulus of elasticity, apparent
damage accumulation plot, 793
damage determination from changes in, 795
Moiré interferometry, 601, 604
applied stress-intensity factor and critical stress-intensity factor, determination, 610–611
dynamic, stress wave and crack-tip defraction events, 482
experimental evaluation of critical stress-intensity factor, 606–610
static, 484–485
stress-intensity factor estimates, 7–9, 13–16
Moment-modified compact-tension test specimens, 724
Monitoring
crack growth in piping, 250–254
laboratory, stress-corrosion cracking in welding pipe, 239–240
smart monitors for intergranular stress-corrosion cracking, 256–258
N
Neutron irradiation, effect on fracture toughness of pressure vessel steel, 400
Numerical methods
J concept applicability to fatigue crack growth, 325–328
SAMCR, 507, 511–521
O
Offshore structures, tubular joints, mixed-mode stress-intensity factors, 669
Optical methods, integrated, three-dimensional effects measurement, 5
Oxygen level in water, stress-corrosion cracking and, 245–249
P
Panels, edge-cracked, stress-intensity factors, 117–121
p-extension, 103
Piping
boiling water reactor, intergranular stress-corrosion cracking
laboratory monitoring, 239–240
modeling, 255–256
monitoring, 250–254
remedies, 239
smart monitors for, 256–258
surface crack testing methods, 240–244
water chemistry and, 245–250
pressurized, ductile crack bifurcation and arrest, 441
PLASCOR computer program, 217
Plates
cylindrical-hole weakened, thickness effect on stress concentration factor, 57–64
Plates—(cont.)
part-through cracks, line spring model, 125
under randomly distributed stress, line
spring model, 660–664
wide
dynamic finite-element fracture anal­
yses, 691
maximum stress and crack extension
prediction, 294–307
R-curves and maximum load toughness,
294–310
Poison’s ratio, effect on stress-intensity fac­
tors for corner cracks in rectangular
bars, 52–53
Pressure vessels
fatigue crack growth in pressurized water
environment, 830
initiation and maximum pressure, R-curve
data, 362–368
upper shelf fracture behavior, 392
Pressurized thermal shock transients, anal­
ysis, 752–755
Pressurized water, fatigue crack growth in
pressure vessels steels and sub­
merged-arc weldments, 830
Pressurized water reactors
crack extension and arrest in reactor vessel
steels, 724
thermal shock studies, review, 752
PRETUBE computer program, 672
PROBE computer program, 114

R
R-6 method, R-curves and maximum load
prediction, 356
Radiation embrittlement, dynamic strain ag­
ing effect on A533B Class 1 pressure
vessel steel, 392, 400–401
Rail
bolt hole cracks, 270–271
clean steel practice, 274–275
detail fractures, 263–270
fracture resistance, 272–273
residual stress, 272–273
structural integrity, 260
vertical split heads, 271–272
wheel load effects, 275–276
R-curves
in elastic-plastic fracture mechanics, 356
maximum load toughness for maximum
stress and crack extension and, 291
Reentrant corners, amplitude of stress sin­
gular terms, computation, 101
Repeat inspection interval, for stiffened-skin
structures, 176
Residual strength
ARREST and BOND programs, 177–199
diagrams in damage tolerance analysis, 173
unstiffened-skin materials, 212–217
Residual stress
plate surface cracks, line spring model for
stress-intensity factor, 657
in rail, 272–273
R ratio
constraint-loss and dual-Walker exponent
models, 643–645, 655
effects on crack growth
AISI 316 compact tension specimens,
323, 329
nickel-based superalloys, 901–904
high values, time-dependent crack growth
rate, 800
Rupture, pressurized pipe, ductile propa­
gation and arrest, 441

S
Safe inspection period, for stiffened-skin
structures, 174–176
Sandwich holospeckle interferometry, three-
dimensional crack-tip deformation,
282–288
Scanning electron microscopy, fracture sur­
faces in aircraft landing wheels, 876–
878
Scattered light photoelasticity, 6, 10–11
Shells
part-through cracks, line spring model, 125
under randomly distributed stress, line
spring model, 660–664
Shielded-metal-arc welds, fracture tough­
ness, 330
Smart monitors, for intergranular stress-cor­
rrosion cracking, 256–258
Speckle photography, sandwich holospeckle
interferometry, 282–288
Split heads, vertical, in rail, 271–272
Steel
1010, 443
Stress fields, corner point of cylindrical-hole-weakened plates, 67–68

Stress-intensity factors
aircraft wheel flange during service loading, 869–872
applied, moiré interferometric determination, 610–611
boundary-layer effect, 51
compact crack arrest specimens, dynamic effects, 537–539
computation from crack-tip opening displacement data, 475–480
contour integral extraction method, 111–113
corner cracks in rectangular bars, 46–53
crack and hole problems and, 68–69
critical
experimental moiré interferometric evaluation, 606–610
generation by combined experiments and analysis, 405, 409–423
plane-strain fracture toughness and, 604–606, 611–617
cutoff function method, 113
dynamic
ASTM, photoelastic data, and SAMCR calculations, table, 518
calculation from isochromatic fringe patterns in compact crack arrest specimens, 508–511
crack velocity and, 520–521
localized displacement equations, 499–501
edge-cracked panels, 117–121
at initiation, crack arrest toughness and, 557–559
integrated frozen stress-moiré interferometric method, 7–9, 13–16
L-shaped plane elastic bodies, 114–117
measurement with boundary integral equation and finite-element methods, 21–26
mesh refinement effect, 51–52
mixed-mode solutions
offshore structural tubular joints, 669
three-dimensional crack fronts, 153
weld-toe surface flaw of an X-joint, 672–675
moiré interferometric determination, 610–611
Stress-intensity factors—(cont.)
moment-modified compact-tension test specimen at arrest, 749–751
plate surface cracks under randomly distributed stress, line spring model, 657
Poisson’s ratio effect, 52–53
prior amplitudes, effect on fatigue tolerance range, 818
range for nonpropagation of fatigue cracks, 823, 826
semielliptical cracks
in bending, 633–636
in a flat plate, 798
Stress, maximum, R-curves for predicting, 294–307
Stress waves
propagation, dynamic moiré interferometry, 482
reflected, effect on crack propagation, 512–513
Submerged-arc welds
fatigue crack growth rate, 830
fracture toughness, 330
Sulfur-bearing inclusions, in base and weld metals, 845, 866
Superalloys
Inconel 718, 800, 883
René 95, 883
Surface cracks
aircraft wheel flanges, analysis, 869–875
under bending or tensile loads, equation for, 597
in boiling water reactor piping, test methods, 240–244
corner cracks in rectangular bars, stress-intensity factors, 43
part-through, line spring model analysis, 664–667
small, life predictions in nickel-based superalloy René 95, 654–655
three-dimensional boundary integral equation analysis, 19
traction boundary integral equation, 26–29
X-joint weld-toe, stress-intensity factor, 672–675
Surface flaws, growth, constraint-loss model in nickel-based superalloy, 637

T

Temperature effects

crack arrest toughness, 553–556, 576
fracture toughness of stainless steel welds, 341–346
nonlinear material behavior of A533-B steel, 539–542
plane-strain crack arrest toughness, 556–557
upper shelf fracture behavior of pressure vessel steel, 392
Temperature gradients, in wide-plate crack-arrest testing, 681, 686–688
Tensile loads, equation for surface cracks, 597
Tensile properties, pressure vessel steels at room temperature, 833
Tension, surface crack growth, 35–37
Thermal shock

crack extension and arrest in nuclear reactor vessel steels, 724
internal pressure loading of thick pressure vessels and, 769–777
pressurized water reactor-related, review, 752
Thermal stress, plate surface cracks, line spring model for stress-intensity factor, 657
Thicknes effects

crack arrest toughness, 561–563
stress concentration factor, 57–64
Three-dimensional effects

crack-tip deformation in plastically deformed three-point bending aluminum, 281
elastic surface crack modeling, 19
frozen stress-moire interferometric analysis, 7–9, 13–16
time predictions and, 73
local crack-tip loading and constraint factor, 73–86
mixed-mode stress-intensity factor calculation, 153
part-through cracks in plates and shells, line spring model, 125
specimen thickness effects on stress concentration factor, 57–64
two-dimensional technology and, 88
Three-dimensional weight function method
(see Weight function method)

Threshold inspection interval, for stiffened-skin structures, 176

Time-dependent crack growth, 802–803
Inconel 718 at high temperature, 914
micromechanisms, 917–919
modeling, 919
prediction of growth rates, 919–920

Titus system, 325–328

Traction boundary integral equation, three-dimensional surface crack modeling, 26–29

Transmission electron microscopy, fracture surfaces in aircraft landing wheels, 876–878

Triaxiality of stress-strain state (see Constraint)

Tubular joints offshore structures, mixed-mode stress-intensity factors, 669
TUJAP computer program, 673–674

Two-dimensional technology, linear elastic fracture mechanics and, 88

Viscoplasticity
A533-B steel compact crack arrest specimens, 539–542
equations for rate-dependent plasticity, 545

Warm prestressing
brittle fracture initiation and, 772–773
incipient, 754–755, 759, 764

Water chemistry, effect on intergranular stress-corrosion cracking, 245–250

Wave propagation, one-dimensional model, 525–531

Weight function method
line spring model and, 660–661, 667
three-dimensional, for elliptical cracks, 620, 621–626
approximate method, 626–630, 632–633
exact solutions, 623–626

Welding processes, effect on fracture toughness of stainless steel welds, 341–346

Weldments, submerged-arc, fatigue crack growth, 830

Welds (see also specific welds)
aluminum, R-curves and maximum load toughness, 298–310
with defects, fitness-for-purpose defect acceptance criteria, 374
stainless steel Types 308 and 16-8-2
chemical composition, 332
delta ferrite morphology, 339
fracture toughness, 330
tensile properties, 335

Weld toe, X-joint surface flaw, mixed-mode stress-intensity factor, 672–675

Wheels
aircraft (see Aircraft landing wheels)
loads, effect on rail, 275–276

Wide-plate tests
crack arrest
application-mode dynamic analysis, 714–717
generation-mode dynamic analysis, 717–718
dynamic finite-element fracture analyses, 691
R-curves and maximum load toughness, 294–310