Subject Index

A

Actimeter motion detectors
 bait station testing, 105–107
evaluation
 actimeter count patterns, 110(fig)
 failure rate, 108–109
 method validation, 109
Activity determination, 103
Agelaius phoenicus, 29
Agricultural crops
 bird damage, 27
 rodent damage, costs, 116
Agricultural production—rodenticide use
 evaluation, 115–116
Agriculture—impacts of rodenticide use, 116–127
Alang-alang, Philippines coconut plantation—rat control study site, 94
Albuera, Philippines coconut plantation—rat control study site, 94
Animal behavior—trapping, 155
Animal capture with steel foothold traps, 153
Animal damage information, 12
Animal movement marking techniques, 128
Anticoagulant rodenticides, 75, 89
 bait station evaluations, 105–112
 California, 117(table)
 hazard to mule deer, 170
 strychnine, 75
ASTM style manual—standardization of key words, 4
Attractants for use with steel foothold traps, 153
Auditory repellent, 56
Avian perch repellents
 efficacy test methods
 cage design, 52, 53(fig)
 results, 54(table), 55
Aviary
 evaluating resistance of corn to birds, 28, 29(fig)
 influence of bird populations on damage amounts, 34
 tests, damage ranking, field corn varieties, 33(table)
Avoidance, 103

B

Bait acceptance
 particle flake markers, 129
 physiological markers to determine efficacy, 141
 bait placement strategies for coyotes, 141
 retention by coyotes ingesting bait, 142–146(tables, figs)
 strychnine, 75
 toxic baits
 use of bait boxes, 103
Bait animals—owl capture techniques, 65–66
Bait box, tamper-proof, 104
Bait consumption of rats—detection by use of fluorescent bone markers, 134–137
Bait station evaluation, 104
 actimeter count patterns, 110(fig)
 controlled use of anticoagulant rodenticides, 104
 fecal counts, 109
 food consumption patterns, 110(fig)
 tamper-proof design efficacy studies, 104–107
 testing methods and materials, 105
 results and discussion, 108–112
Bait, rat control studies—Philippines coconut plantations, 94
Baiting, tropical and subtropical crops, 89–90
Bal-chatri trap, 65
Barn owl, 67
Behavior, trapping, 155
Bird damage, agricultural crops, 27
Bird repellent, ultrasonic device efficacy testing, 56

Birds
 corn crop damage, 29, 39
 aviary tests, 33
 repellent seed treatments, 40
 varietal resistance, 37
 insectivorous feeding habits, 27
 perch repellents, 52
 pest control, 39
 repellent seed treatments, 39
 ultrasonic repellent device, 56
Black-capped chickadee. See Chickadee, black-capped
Blackbird, male red-winged
most important predator of ripening corn, 34, 35(table), 36

Blue jay
ultrasonic repellent device, 57-58

Brown-headed cowbirds. See Cow birds
Bubo virginianus. See Tethered great horned owl

C

CAB. See Commonwealth Agricultural Bureau
Cacao trees—rodent damage, 89-90
Cage design—avian perch repellants, 53(fig)
California, Central Valley, Tulare county citrus crops
production values of crops treated with rodenticides, 119-120(tables)
rodent control, 123
rodenticide treatments, by crop, 118(table)
rodenticide use impact, 116
California, Northern rice fields—Norway rat populations, 81
Cap-Chur darts, for mule deer, 172-173
Cap-Chur rifle, for mule deer, 173-174
Capture devices—efficiency comparison of live and kill-type traps, 153
Capture techniques
mule deer, 170-176
owls, 65-66
Captured animals—by steel foothold traps, 153
Carnivores—steel foothold traps for capture, 148
Carpodacus mexicanus. See Finch, house
Census methods
assessing Norway rat populations, 81
bait station testing
animals, 105-107
environment, 105-107
results and discussion, 108-112
feeding activities of Norway rats, 82-83, 85-87(tables, figs), 109
gnawing activities of Norway rats in California rice fields, 82-83, 85-87(tables, figs)
Chemical control methods—marking techniques for determining feeding behavior of rats, 128
Chemical repellents
field and field enclosure studies, 39-40
germination chambers, 42
treatments, 40
Chickadee, black-capped—ultrasonic repellent device, 57-58
Chlortetracycline fluorescent bone markers to detect bait consumption in rats, 13
Citrus crops, California, rodenticide use evaluation, 116-127
Cliff swallows—ultrasonic repellent device efficacy, 56
Climatic influence on trap performance, 155
Coconut plantations, Philippines
rat control methods, 91-96
rat crop damage, 89-90, 99(table)
three study sites, 94
treatment efficacy, 96-99(tables, figs)
Cocos nucifera L. See Coconuts
Coffee trees—rodent damage, 89-90
Columba livia. See Pigeons, Rock doves
Common grackles, 29
Commonwealth Agricultural Bureau (CAB)
CAB thesaurus of terms, 3
Compound 1080, 116
Computer aided analysis of survey results, 23
Computer retrieval. See Information retrieval
Cormorants—ultrasonic repellent, 56
Control methods, 12
Corn crop damage by birds, 27-39
Corn crop damage by rodents, 40
Corn seed repellent treatments
chemicals, 39
methiocarb, 40
phytotoxicity, 40
thiram, 40
closure trials, 45(table)
field studies, 40-41, 46
germination chamber trials, 45(table), 46
plant performance, 44(table)
Corn varieties
bird resistance, 27-30
damage assessment, 31
aviary tests, 33(table), 36
rankings, 37(table)
damage by birds, 27-30
repellent seed treatments
field and field enclosure studies, 40-41
germination chambers, 42
preparation for testing, 30, 31(fig)
treatment materials, 40
varel resistance, 3
weather data, 41
Cost analysis of rat control methods, 100 (table)
Cotton rat—tetracycline fluorescent bone markers, 134-137
Cowbirds, brown-headed, 29
Coyotes—physiological markers
bait ingestion, 141
predation control costs, 159
Crops
damage by birds, 29, 39
bird resistance, 27
aviary tests, 33(table)
effect of alternative food sources, 32
experimental work, 32
damage by rodents
agriculture, 115–116
corn seed crops, 40
tropical and subtropical crops, 89–90
Crown baiting of rats on Philippine coconut plantations, 91–93, 95–96
Crown snap trapping of rats on Phillipine coconut plantations, 91
Cyanocitta cristata. See Blue jay

D
Damage by wildlife, 12
Damage information gathering, 12–16
Damage prevention, California crops rodenticide use evaluations, 123–124, 125 (tables)
Damage prevention, tropical and subtropical crops, 89–90
Damage resistance of crops to birds, 27
ultrasonic repellent device, 56
Damage to coconut crops, Philippines, 94
Damage to corn crops by birds, 29, 39
Damage to tropical and subtropical crops, 89–90, 94
Dark-eyed junco. See Junco, dark-eyed
Data bases, key word criteria, 3
Darting—capture technique for mule deer, 171, 172–173
Data collection methods—surveys, 12–23
Deer mice, 46
Deer, mule. See Mule deer
Demeclocycline
fluorescent bone marker to detect bait consumption in rats, 134–137
physiological marker for bait-ingesting coyotes, 141
Dho-gaza trap, 65
Direct predation costs of coyotes to Wyoming sheep producers, 159–168
Domestic pigeons. See Pigeons, domestic
Drug capture technique for mule deer, 172
Dye particle markers for rodents, 128

E
Ecology, species trapping, 155
Economic impact survey, sheep industry methodology—interviews with producers, 160
Economic impacts of sheep industry predation costs in Wyoming, 160
Edaphic factors related to trap performance, 155
Efficacy
bait placement strategies on coyotes, 141
bait station design, 104
bird repellent devices, 52–56
physiological marks on coyotes
oral marking agents, 141–142
rat baiting treatments on Philippine coconut plantations, 96–98(tables, figs)
tamper-proof bait box design, 104
Electronic attractants for steel foothold traps, 153
Emergence/germination data after corn seed treatment, 42, 43(table)
Enclosure tests
coconut plantation trials, 94
corn seed repellent treatments, 45(table)
Environment—testing of bait stations, 105
Environmental exposure evaluations of particle markers, 128
Environmental factors in trapping, 155
Environmental Protection Agency (EPA)—Rebuttable Presumption Against Registration (RPAR) process, 116
Erie County, Ohio
construction of aviary to test bird resistance and damage to corn varieties, 28–30
European starlings. See Starlings

F
Fecal counts—bait station evaluation, 109
Feces—particle flake markers, 129
Feeding behavior and habits
birds, 27
Norway rats, 82–83, 85–87(tables, figs)
rats at bait points metallic flake particle markers, 128
owls, 67
Field corn. See Corn varieties
Field enclosure tests on Philippines coconut plantations, 94
Field evaluations of chemical repellents, 39–40
Finch, house—ultrasonic repellent devices, 57–58
Fluorescence of physiological markers of coyote baits, 141
Fluorescent markers—tetracycline cost comparisons and efficacy, 134–138
Fluorescent markers to detect bait consumption in rats, 134–137
Fluorescent pigment markers to determine rodent feeding behavior, 128
Food consumption
as census method for rats, 81-83, 85-87
(tables, figs)
bait station evaluation, 111(fig)
Foothold trap for capturing carnivores, 148
Fumigants, 116
Fur harvesting, 148

G
Geographic and vegetative conditions for trapping, 155
Germination of corn seed after repellent treatments, 39, 42-43(table), 48
Germination chamber trials, 45(table), 46
Gnawing behavior of Norway rats—census method for assessing populations, 82-83, 85-87(tables, figs)
Golden-mantled ground squirrels, strychnine poisoned, 75
Gophers, pocket—California control programs, 116-117
Goshawk, Swedish trap, 65
Grackles
damage to corn crops, 29, 34
ranking in corn crop aviary tests, 35(table)
Grapes, California—rodenticide use evaluation, 123
Ground baiting of rats, Philippines, 93
Ground snap trapping of rats, 91-93
Ground squirrels. See Squirrels, ground
Gulls—ultrasonic repellent device efficacy, 56
Gustafsson 42-S Fungicide and Repellent Liquid. See Thiram

H
Habitat use
owls, 67
trapping, 155
Habituation—ultrasonic bird repellent device, 56
Hazard evaluation
radiotelemetry to determine secondary poisoning of owls, 66
rodenticide poisonings of nontarget owl populations, 64, 66, 69
Hoop nets
owl capture techniques, 66
House finch. See Finch, house
House sparrows. See Sparrows, house

I
Identification, 128
Immobilization—mule deer capture techniques, 170

Indexes, 3
Indirect predation costs of coyotes to Wyoming sheep producers, 159-168
Information gathering, 12-16
Information gathering—sheep industry predation costs, 160
Information retrieval, 3
Injuries, trap-related, 154
Insectivorous feeding habits, birds, 27
Interviews, face-to-face surveys, 13
sheep industry producers, 160
Iodine physiological markers—retention by bait-ingesting coyotes, 142(table), 143, 144(table)
lophenoxic acid—physiological marker for bait-ingesting coyotes, 141, 144, 145(table)

J
Jay, blue—ultrasonic repellent device, 57-58
Junco, dark-eyed—ultrasonic repellent device, 57-58
Junco hyemalis. See Junco, dark-eyed

K
Ketamine hydrochloride, 170
Key words proposed for vertebrate pest control
alphabetized, 8-10
by subject category, 5-7
Key words retrieval
advantages, 3
disadvantages, 4
selection guidelines, 3-5
standards, 4
Kiwi fruit, California
rodenticide use evaluation, 123

L
Laboratory tests, 52
Lambs lost to predators, 159
Lepus californicus. See Rabbits
Leyte, Visayas, Central Philippines—field studies
crop damage by rats, 90-91
map, five study sites, 92(fig)
Lures and baits for steel foothold traps, 153

M
Macrohon, Philippines coconut plantation rat control study site, 94
Mail surveys, 16, 160
Male red-winged blackbirds. See Blackbirds
Markers, 128
Marking, rodent, 89–91
Meadow voles, California, 116
Metallic flake particle markers
coconut plantations, 94
feeding behavior of/rats, 89, 128, 129,
130(tables)
Metallized polyester film particle flake mark-
ers, 129
Methiocarb corn seed treatment, 39, 40, 48–
49
Mesural 50% Hopper-Box Treater (HBT),
Mesural Wettable Powder(WP). See
Methiocarb
Metallic flake marking, 89
Mice, deer, 46
Mice, house—bait animals for owl capture
techniques, 65–66
Microtus spp. See Meadow voles
Mirex—physiological marker for bait ingest-
ing coyotes, 141, 143, 145(table)
Mist nets—capture techniques for owls, 65–
66
Moheli Island, Federal Islamic Republic
field trials of metallic flake particle markers
to determine feeding habits of rats,
131, 132(table)
Molothrus ater, 29
Motion detectors. See Actimeter motion de-
tectors
Mule deer capture operations, 170
Mus musculus. See Mice, house

O

Odocoileus hemionus. See Mule deer
Odor attractants in steel foothold traps, 153
Oil palm trees—rodent damage, 89–90
Oral marking agent—efficacy of baiting sys-
tems, 141
Oranges, California—rodenticide use evalua-
tion, 123
Owl, barn
capture techniques, 65–67
diet, 67
habitat preferences, determined by radiote-
lemetry, 67
Owl, tethered great-horned, 5
Owls—hazard evaluation, field research
capture techniques, 65–66
food habits, 67
prey and habitat use, 67
secondary poisoning hazards from rodenti-
cides, 64–65

P

Parametric statistics. See Statistics
Particle markers—identification, 128–129
Parus atricapillus. See Chickadee, black-
capped
Parus bicolor. See Titmouse, bicolor
Passer domesticus. See Sparrow, house
Pellet analysis—owl diet, food chain link to
toxicant, 67
Pen trials—Norway rat particle markers, 130
Perch repellent testing
test methods, 52
cage design, 53(fig)
test results, 54–55, 54(table)
ultrasonic repellent devices, 56
Peromyscus maniculatus. See Deer mice
Pest management techniques
bird control, 39
ultrasonic repellent device, 56
rodent control, 39
Pesticide evaluation, 103
Pesticide use reporting systems, 125
Philippine rice-field rats. See Rats, Philippine
rice-field
Philippines coconut crops—rat control field
studies, 89–94
Physiological markers—retention by bait-ingest-
ing coyotes
efficacy of different baiting systems, 141–
143
Phytotoxicity of seed corn to chemical repel-
ents, 40
Pigeons, domestic
perch repellents, 52
ultrasonic repellent devices, 56
Pigment, fluorescent marker for rodents to
determine feeding behavior, 128
Plant performance after corn seed repellent
treatment, 39, 48-49
Plastics in bait stations, possible repellent
properties, 113
Plums, California—rodenticide use evalu-
ation, 123
Pneudarts—capture technique for mule deer,
172-173
Pocket gophers—California control pro-
grams, 116
Poisoning—secondary hazards to non-target
species, 64
Polynesian rats. See Rats, Polynesian
Population densities—control trapping, 155
Population monitoring, 81
Predation control costs
predatory animal tax, 162-163
Wyoming sheep production, 159-162, 163-
165(tables), 166-168
costs, 162, 163(table), 164-165(tables),
166-168
predatory animal tax, 162-163
Prey and habitat use, owls, 67

Q

Questionnaires—mailed surveys
design, 15
disadvantages, 15
question selection process, 18
wording, 19
Quiscalus quiscula, 29

R

Rabbits, California
rodenticide use information, 117
Radiotelemetry
hazard evaluation of secondary rodenticide
poisonings
nontarget owl populations, 66
owl habitat preferences, 67
owl populations, 69
Random sample. See Sampling
Rat baiting treatments, Philippines—effi-
ciency, 96-98
Rat control field studies, Philippines coconut
crops
Leyte, Eastern Visayas, 89-91, 93-94
noncapture sampling techniques, 91
Rat control methods, Philippines coconut
plantations—cost analysis, 99-100(ta-
ble)
Rat gnawing behavior—possible census
method, 82-87
Ratoxin, 89
Rats
cocnut crop damage, 89-90
damage to California crops, 116
feeding behavior—particle markers, 128
Rats, cotton—tetracycline fluorescent bone
markers, 134-137
Rats, Norway
bait animals for owl capture techniques,
65-66
behavioral response in utilization of bait
stations, 112
census methods for assessing populations in
Northern California rice fields
feeding and gnawing activities, 81-87
tamper-proof bait station design, testing
and evaluation, 105-107
Rats, Philippine rice-fields—damage to tropi-
cal and subtropical crops, 89-90, 94
Rats, Polynesian—damage to tropical and
subtropical crops, 89-90
Rats—tetracycline fluorescent bone markers,
134-137
Rattus exulans. See Rats, Polynesian
Rattus norveticus. See Rats, Norway
Rattus rattus. See Rats, roof
Rattus rattus mindanensis. See Rats, Philip-
pine rice-field
Rebuttable Presumption Against Registration
(RPAR) of rodenticides, EPA process,
116
Recreation trapping, 148
Redwinged blackbirds—aviary tests for corn
crop damage, 29, 34, 35(table)
Repellents
auditory, 56
avian perch, 52-55
chemical, 39
plastics, 113
seed treatments, 40
germination chambers, 42
ultrasonic devices, 56
Resistance to damage by birds, 27
Rhodamine B—physiological maker for bait-
ingesting coyotes, 141, 145-147
Rice field rats. See Rats, rice-field
Rice fields of northern California, Norway rat
populations, 75
Richardson ground squirrels, strychnine poi-
son study, 76
Rock doves—bait animals for owl capture
techniques, 65-66
Rodent activity, 109
Rodent behavior, 112
Rodent control
 bait station evaluations, 105-112
 tropical and subtropical crops, 89-90
 Tulare county, Central Valley, California, 116
Rodent damage. See also specific rodents
 agriculture, control costs, 115-116
 cacao trees, 89-90
 control program costs, 116
 corn crops, 40
 oil palm trees, 89-90
 tropical and subtropical crops, 89-90
Rodent marking, 91-93
Rodenticide use information, 117
Rodenticides
 anticoagulant, 75, 89, 112
 application, 105
 bait station design, 113
 bait station evaluations, 105-112
 baiting in tree crowns, 91
 baiting on ground, 91
 baiting on tree trunks, 91
 benefit/cost evaluations, 116
 compound 180 (sodium fluoroacetate)—California rodent and rabbit control, 116
 evaluation of use on agriculture in California, 115-127, 117(table)
 impacts of use on agriculture, 116
 production value of treated crops in California, 119-120(tables)
 radiotelemetry studies of owl populations, 69
 secondary poisoning hazards to nontarget species of owls—field studies, 64-66, 68
 strychnine, 75, 89, 116
 tamper-proof bait station design, 113
 treatment for rodent pests in California, 117-122
 use impacts compared to damage, 119, 121-122
 compared to value of treated hectares, 123
 versus potential damage, 123
Rodents—bait station evaluations
 activity, 109
 behavior, 112
 feeding behavior for toxic baits, 109
 particle markers, 128-129
Rodents—control, 105-112
Rodents—crop damage, 89-91
 particle markers
Rompun, 170

Roof rat—tetracycline fluorescent bone markers, 134-137
Rubber plantations—rodent crop damage, 89-90

S
S. richardsoni nevadensis, 75
Sample design—sheep industry predation control, 161
Sampling, 13, 19-22, 160
Sampling techniques
 noncapture rodent control, 91
 sheep industry predation control, 161
Seasonal and geographic influences—trapping, 155
Secondary poisoning hazards
 owl field study, 64
 population effects, 67-69
Seed germination, 39
Seed treatments
 bird repellents, 39-40
 rodent control, 39
Sheep and lambs lost to predators, 159
Sigmodon hispidus. See Cotton rat
Sitta carolinensis. See Nuthatch, white-breasted
Snap trapping of rats, 91-93
Sodium fluoracetate pest repellent, 116
Soils and trap performance, 155
Sound—ultrasonic pest repellent device, 56
Sound attractants for steel foothold traps, 153
Sparrows, house—repellents tests, 52-53
Special local needs registration, 40
Species ecology, trapping, 155
Spermophilus lateralis. See Squirrels, ground, golden-mantled
Spermophilus richardsoni nevadensis
 See Squirrels, ground, Richardson
Spermophilus tridecemlineatus. See Squirrels, ground
Sprout emergence, 39
Squirrels, ground
 California, rodenticide evaluation, 116-117
 citrus crops, 123
 levels of strychnine in stomach, 75
 responses to repellents, 40
Squirrels, ground
 strychnine poison studies, 75-76
Standards
 ASTM manual, 4
 key word retrieval, 3
Steel foothold traps
 public opposition, 148
 test methods for evaluating, 148
Starlings, European
bait animals for owl capture techniques, 65-66
corn crop damage, 29, 36
perch repellent test methods, 52
test cage design, 53(fig)
ultrasonic repellent device, 56
Statistics, 12, 23
Structures—rodent damage, 115-116
Strychnine
bait, 75
California use to control ground rodents, 116
in poisoned ground squirrel stomachs, 75-76, 77-79(tables)
nontarget hazard, 64, 79
Sturnus vulgaris. See Starlings, European
Subtropical crops—rodent damage, 89-90, 94
Sunflower crops—bird damage
ultrasonic repellent device, 56
Surveys
computer aided analysis, 23
methods, 12-13, 16-19, 161-162
costs, 17(table)
selection, 16, 17(table)
results, analysis, 22
types
face-to-face interviews, 13
mail, 16
television, 14
wording of questions, 19
Swallows, cliff—ultrasonic repellent device ef­ficacy, 56
Swedish goshawk trap, 65
Sweet com. See Corn varieties

T
Tamper-proof bait station evaluation
testing methods and materials, 105-107
Tea, crop damage by rodents, 89-90
Telephone surveys, 14
Test cages for evaluating corn resistance to
test methods, 57-58, 62
test results, 61(tables)
Traps
owls
bal-chatri, 65
dho-gaza, 65
hoop nets, 65
nest poles, 65
steel foothold
criteria, 149
efficiency, 153
evaluation, 150
materials, construction and components, 149-150
performance, 151
field tests, 151-153
laboratory tests, 150
tests with captive animals, 151
preparation and maintenance, 150-151
verbail, 65
Tree crops, tropical and subtropical—rodent
damage, 89-90
Tropical and subtropical tree crops rodent
damage, 89-90
Trunk baiting of rats, 93
Tufted titmouse. See Titmouse, tufted
Tulare county, California, rodenticide use in
agriculture, 116-117
Tyto alba. See Barn owl

U
Ultrasonic bird repellent devices
efficacy tests, 56-57, 59(fig), 60(fig)
test methods, 57-58, 62
test results, 61(tables)
Ultrasound pest repellent device, 56
Uncontrolled vocabulary. See Key word retrieval
Urban nuisance problems—trapping, 148
Utah sheep industry—predation costs, 159

V
Validation of bait station evaluations, 109,
110(fig), 111(fig)
Verbail traps, 65
Vegetative conditions—trapping, 155
Vertebrate pest control
- bait station evaluation, 103-114
- crop damage, 39
- economic costs, 116
- key word thesaurus, 5-10
Norway rats, 81
rodenticide use evaluation
 California agriculture, 116, 125
 standardized list of key words, 4
 standards for information retrieval, 3
 ultrasonic repellent device, 56
Vetalar, 170
Visual attractants—steel foothold traps, 153
Voles, meadow, California crop damage, 116

W
Walnuts, California, rodenticide use evaluations, 123
Warfarin, 89
Weather data—corn seed repellent testing, 41, 47(table)
White-breasted nuthatch. See Nuthatch, white-breasted
Wild deer capture, 175
Wild mule deer. See Mule deer

Wildlife habitats—rodent damage assessment, 116
Wildlife hazards
 radiotelemetry study, 69
 rodenticides
 secondary poisoning of owls, 69
 strychnine, nontarget hazard potential, 76
Wildlife management
 damage control, 39
 surveys for damage information gathering, 16-18
 trapping for population reduction, 148
Wording of survey questions, 19
Wyoming sheep industry—predation costs, 160-168

X
Xylazine hydrochloride, 170

Z
Zinc phosphide rodenticide, 116
Zoonoses, density dependent—trapping for population reduction, 148