Subject Index

A

Air permeation test, 848
Air pluviation, 410, 655
Air-water mixture, bulk modulus, back pressure effect, 345
Alluvial clay, 355-356; see also Low plasticity clays
Aluminum, polished platen, 207
Analog-to-digital conversion, 110
Angle of friction, 363
interlocking, 567-568
relation with particle breakage, 689
ultimate, 567
Angle of internal friction, see Friction angle
Angle of shear resistance, 667
Anglian till, 592
description, 593
Anisotropically consolidated undrained tests, 323, 328-332, 334
Anisotropic clays, 819
Anisotropic consolidation, 82, 123-124, 231-232, 264, 732
effective stress, unsaturated soil, 545-546
e-log p curves, 545
loading path, 545
simplified, 276-277
stresses, 391
techniques, 455
Anisotropic preshear consolidation stresses, 423
Anisotropic remolded clay, undrained true triaxial test, 829-831
Anisotropic sand, stress-strain relations, 785
Anisotropy, 7, 421, 766, 796
influence, 767-768
shear-induced, 472
stress-induced, 831
undrained, 450
see also Cross-anisotropy
Antifriction device, 291, 293
Apparatus compressibility, 430
Area correction, 433-435, 715
bulging failure, 716-717
general procedure, 730
shear plane failure, 716-718, 729
ASTM C 109, 409, 411-414, 416
ASTM D 698, 630
ASTM D 854, 613, 630
ASTM D 1586, 629
ASTM D 1587, 629-631, 638, 640
ASTM D 2049, 207, 409
ASTM D 2216, 633
ASTM D 2487, 630, 733
ASTM D 2850, 631, 720, 722, 724
Atchafalaya clay, frequency response, 780
Automated measurements, 7
Automated triaxial testing, 95-106, 143
block diagram of loading system, 97
computer and printer, 99
controller, 96-98
interface unit, 99
loading system components, 98-99
schematic, 97
software, 100-101
test results, 101-106
transducer and signal conditioner, 98
triaxial cell, volume change device, 98
Automatic drained testing rate, 89-90
Axial compression, measurement, 47, 51, 282
Axial correction, 431
Axial deformation
digital indicator, 87
measurements, errors, 260
Axial displacement
cohesionless soils, 44-49
measurement, 225-232
error sources, 226-227
misalignment errors, 227-230
stiffness curve, 225-226
stiffness evaluation, 230-232
pore pressure distributions, 588
Axial load, 845-846
application, 146
measurement, 223-224, 734
Axial rebound, 735
Axial strain, 132, 202
apparent shear strength as function of, 528
bedding error, 695
conversion to rotation of electrolevel capsule, 47, 50
cyclic, versus Poisson’s ratio, 141–142
direct measurement, 493–495
measurement, 134–135, 770–771
peak, test condition effects, 296
pore pressure distributions, 589
versus, 672–673, 675
versus radial strain, 736–737
versus shear stress, 355, 359
versus stress difference and pore pressure change, 346–348
versus stress ratio, 703–704
Young’s modulus effect, 137–138
Axial stress, 378
average, 775
versus conventional and local strain, 491, 494
effective, 37
hydraulic triaxial apparatus, 55
independent stress control apparatus, 844
pore pressure distributions, 589

B
Back pressure
application, 275–276
bulk modulus effect, 345
consolidation, 391
saturation by, 246–248, 436–437
Banding sand, 643–644
Bedding error, 436, 486
correction, 491
cyclic triaxial test, 492
drained compression triaxial tests, 292
embankment dams, 491–493
lubricated ends, 695
Bellofram seal, 55
Bender element
before and after excitation voltage, 285
initial shear modulus from, 284–287
mounted in triaxial pedestal, 285
piezoceramic, 284–285
Bifurcation, 604, 611
Biologic activity, contaminated soils, 400
Biot’s theory of consolidation, 583–585
Biot’s theory of poro-elasticity, 582–583
Bivariate beta distribution
chi-square goodness-of-fit test, 556–559
discretized x-y domain, 557
Q-R domain, 557–558
Bivariate beta modeling, parameters c and t, 561, 563–565
Bivariate distributions, 553, 559
Block samples, 630
Boulder clay
shear strength, 530–531
triaxial compression test, partially saturated soils, 529–530
Boundary condition, 692, 706
flexible, 757–759
isotropy, 796–797
mixed rigid and flexible, 757
rigid, 756–757
surface friction, 756
Boundary-material interactions, 743–744
Boyle’s law, 208, 342
Brittle fracture, 169
Bulk modulus, air-water mixture, back pressure effect, 345
Burette method, 202, 850–851
Bushing, designs, 433
C
Calcareous sand, 290
Calcareous soil, 363
CALIB, 100
Cambria sand, 707
Cambridge true triaxial apparatus, 796–805
description, 797–800
plane-strain tests, 813
platen arrangement, 797
sample preparation, 800–801
stepper motors, 797–799
strain path, used to prepare one-dimensionally compressed samples, 800–801
variation with time of principal stresses and strains, 801–802
Cap
free horizontal movement, 698, 700–702
rotation, end conditions, 696–698
tilting angle, 697, 699
Castor oil, 281
Cavitation, 240
Cell fluid, 189
deaired water as, 192
glycerin as, 194
Cell pressure
elevated, 290, 298–299
initial, application, 274–275
Cemented soil, 363
CK, U test programs, 447–448
strength ratio, 452–453
CK,U triaxial compression, 455–456
Clayey soil, 501, 503
Clays, 387, 512, 667, 796
comparison of undisturbed and disturbed specimens, 268–269
consolidation paths, 253–255
constant rate of strain hydrostatic compression, 128
e-log p relation, 504–505
extrusion, 235
flow-pump-permeability and coefficient-of-consolidation data, 73–75
geotechnical characteristics, 196
grain size accumulation curves, 502
heavily overconsolidated specimens, 271–274
filter paper, 272
specimen height, 271–274
stress paths, 278–279
initial effective stress measurement, 243
Ko consolidation and rebound, 129
normally and slightly overconsolidated specimens
specimen mounting, 274
stress paths, 277–278
physical properties, 502
preconsolidation stress, 266–267
reconsolidation, 253, 255
sample disturbance, 266, 268
shear strains, 232–233
stress-dilatancy relation, 509
stress-strain relation, 506–508
under cyclic loading, 768
volumetric strain, 265–266
see also Low plasticity clays
Coarse particles effect, embankment dams, 498–499
Coefficient of compressibility, 547–548
versus void ratio, 543
Coefficient of consolidation, 68
response time and, 74–79
Coefficient of permeability, consolidation, 672, 674
Cohesion, 363
apparent, 523
Cohesionless soils, 7–62, 567–581, 692
angle of internal friction, 11, 18–19
automated strain and stress control, 54–61
axial displacement, 44–49
conversion of axial strain to rotation of electrolevel capsule, 47, 50
diagram of triaxial apparatus, 36
differential hydraulic stress path control system, 54–55
effective stress path, 22, 24–26, 28, 30
end lubrication, 42
effective stress, 580
frequency-independence of deformation properties, 46–47
grain size effect on peak strength, 577
gravel content, 579–580
horizontal displacement, 49, 51–52
hysteresis loop, 45–46
laboratory shear testing methods classification, 12–17
laboratory strength testing, 8–30
load measurement, 38–40
location stud embedded in sample, 52
normalized strength difference versus percent dilatation, 576
o versus shear distortion, 29
parallel gradation curves, 569–570
percent dilatation, 575
percent fine content, 571
relationship with maximum grain size, 569, 571
slope of normalized strength difference lines versus, 577–578
percent gravel, sand, and fine content by weight, 570–571
pressure measurement, 35–38
principal stress directions, 11
continuous rotation, 29, 62
reconstituted specimens, 240–242
shear strength components, 567
grain effect, 568–569
shear stress versus o, 23, 27–28
slope of best fit lines, 577
stress conditions, sample preparation, 40–41
stress corrections, 41–42
stress path, 29
stress-strain curves, 573
stress-void ratio curves, 573
suction, 233
test material, 570–571
two-component load cell, 35
undisturbed frozen and unfrozen samples, 242
volume change, 49, 51–54
weighing system with electronic balance, 52
see also Triaxial cell
Cohesive soils, 353
compacted, pore water pressure, 513
conventional triaxial test, 421–422
effective stress
drying effects, 237–238
factors affecting, 234
Cohesive soils—Continued
pore pressure gradients, 236–238
specimen preparation, 235–236
water exchange
specimen and filter paper, 238–239
specimen and membrane, 238
water imbibed from pore pressure, 239–
240
see also Saturated cohesive soils
Collar-coupled load design concept, 147
Combination hydraulic-pneumatic loading
system, 119–131
anisotropic K_0 consolidation, 128–129
apparatus description, 119–122
consolidation, 122–124
constant rate of strain hydrostatic con­
solidation, 128
cyclic loading, 127
constant stress ratio anisotropic consol­
idation, 128
compaction, 169–187
cohesive soils, pore pressure, 513
compaction characteristics, 172–173
compression test, 172, 179–182
description, 172
failure zones, 184
shear strength law, 183
suction-water content relationship, 173–
175
see also Tensile strength
Compaction, 642
equal-volume method, 644–645
methods, reconstituted sand specimens, 405
molds, 391
relationships, Vicksburg buckshot clay, 519
tests, 512
Compatibility equation, 777, 794
Compliance, 68, 70–71
Compressibility, 68
apparatus, 430
latex disks, 493
values, 78–79
very small strain, 72–73
Compression tests, 124, 202
compacted soils, 172, 179–182
shear strength, 268
see also Multistage compression tests
Compression theory, 720–721
Computer controlled hydraulic triaxial test­
ing system, 82–94
automatic drained testing rate, 89–
90
axial deformation digital indicator, 87
cyclic loading tests, 92
data presentation, 90
digital controller, 86–87
extension device, 84–86
extension tests, 93
features, 93–94
K_0 consolidation, 89
layout, 82–83
pore pressure measuring system, 87
stress path testing, 91–92
test control, 88
triaxial cell, 82–84
Computer system, deformation measure­
ment, 206
Concrete, cyclic tests, 812–813
Confining pressure
effective, 36, 658
initial, membrane correction, 719–720
Consolidated drained test, 424–426
Consolidated isotropic undrained compres­
sion test, lateral filter drains, 198
Consolidated tests, 219
Consolidated undrained shear, 667
Consolidated undrained test, 424–426
Consolidation, 107, 189, 219, 264
anisotropic, see Anisotropic consolida­
tion
back pressure, 391
Biot’s theory, 583–585
coefficient of permeability, 672, 674
combination hydraulic-pneumatic load­
ing system, 122–124
filter paper effects, 194–199
filter paper efficiency, 200
increment duration, 284
isotropic, 314
pore pressure dissipation, 671–672
shallow samples of normally consoli­
dated soil, 279
to high stress, 471–472
two-stage, 800
water content versus effective pressure,
670–672
with and without lateral filter drains, 196–197
Consolidation path
clays, 253–255
effects on stress-strain behavior, 255, 257
sands, 255, 257–259
Consolidation pressure, effective, versus
undrained shear strength, 676
Consolidation states
SHANSEP method, 469–470
soil behavior, 466–467
Consolidation stress, effective, Young’s
modulus effect, 137
Consolidation stress path
highly overconsolidated clays, 278–279
lightly overconsolidated clays, 277–278
Consolidation tests, 512
Constant-head permeability tests, 74
Constant-rate-of-deformation consolidation,
flow pump applications, 71–72
Constant rate of strain hydrostatic consolidation, 128
Constant strain-rate triaxial tests, 582
Constant volume cyclic simple shear aparatus, 21
Constitutive equations, 766
hollow cylinder torsional devices, 779–784
Constitutive laws, 834
Constitutive model, shear band formation,
608–612
Contaminated soils, 387–403
biologic activity, 400
differential consolidation, 394–395
diffusion through membrane, 398–400
effective stress, as function of hydraulic conductivity, 393
equipment, 389–390
gradient, as function of hydraulic conductivity, 391–393
health and safety considerations, 401
influent equilibrium, 396–398
maintaining saturation, 395–396
materials, 388–389
particle migration, 393–395
permeant, 389
pore volume displacement, 398–399
procedure, 390–391
shear strength, 400
test duration, 392
testing at low gradients, 400
type of water, 400
Contamination resistance, 389
Conventional triaxial compression, 203
100-cycle, 213–214
Conventional triaxial test, 363, 501
cohesive soils, 421–422
Corrections, 421
Crack propagation, hollow cylinder torsional devices, 787
Creep, 107
rate, versus isotropic stress, 304, 306
station, major components, 166
Critical state, 592
theory, 169, 469
Cross-anisotropy, 9, 706
axis of symmetry, 9–10
Cubical devices, 743–763
actual boundary surface conditions, 755–759
all flexible, 749–752, 752
all rigid, 747–748
alternative perfect surface conditions, 745–747
boundary-material interactions, 743–744
capabilities, 745–746
directional shear cell, 752–755
mixed rigid and flexible, 749
needed developments, 760, 762
proving apparatus performance, 755
specimen homogeneity, 744
stress-strain data, 759–763
uses of data, 744–745
Cyclic behavior, 859
Cyclic compression-tension tests, membrane-piston cell, 813
Cyclic loading, 82, 119, 121–122, 264
clays, 768
combination hydraulic-pneumatic loading system, 127
dense sand, 92
stress loading, followed by monotonic strain-controlled undrained loading, 130–131
Cyclic strain-controlled testing, 475–484
deviator vertical load, versus pore pressure, 482
intact and reconstituted specimens, 479–480
interpretation of results, 479–483
pore pressure model, 481–483, 484
procedure, 477–479
residual pore pressure in reconstituted specimens of sands, 481
sands tested, 476–477
testing configuration layout, 479
triaxial cell, 478
Cyclic tests, 280–283
bedding effect, 492
Cyclic tests—Continued
membrane-piston cell, 812
shear, deformation properties, 46–47
Cyclic torsional shear tests
apparatus, load-controlled, 47, 49
quasistatic, 47–48
Cyclic undrained tests, 32–33, 280–283
Cyclic undrained torsional shear tests, 21–22
Cylindrical specimens, advantages and limitations of triaxial test, 221–223

D
Damage propagation, hollow cylinder torsional devices, 787
Damping ratio
at large strain, 783
versus strain, 781
Darcy’s law, 153
Data acquisition, 167
Decay model, 75–76
Deformation
false, 284
localization, 861, 863–864
Deformation measurement, 202–215, 438
computer system, 206
data capture and reduction, 205–207
device, 809–810
gap sensor method, 854–855
end restraint, 854–855
strain distribution, 855–856
interstitial membrane penetration, 212
linear variable differential transformer, 204–205
mean pressure versus volumetric strain, 211
no-contact gap sensors, 848–852
noncontact devices, 204
Q’ versus vertical strain, 209–210
sample preparation-back saturation, 207–209
strain gauges, 203–204
volumetric strain, versus ε, 209, 211
Deformation modulus, embankment dams, 490, 493
Deformation properties, frequency-independent, 47
Dense sand
cyclic loading test, 92
cyclic undrained triaxial tests, 280–283
Densification, sand, 412
Density, 405
Deviatoric strain, 803–804
Deviatoric strain path, 802–803, 866–867
Deviatoric stress, 333–334, 727
Kuwaiti soils, 371, 373
plane, 862
removal, 734
true triaxial testing cell, 825
vectors, 830–831
versus strain curves, 358, 360
Deviatoric stress path, 802–803
Differential consolidation, contaminated soils, 394–395
Differential hydraulic stress path control system, 54–55
Differential pressure, 36
transducer
liquid-liquid, 35–37
low capacity, 35, 39, 49, 51, 56
Digital controller, 82, 86–87
Dilatancy, 679
peak rate
evolution with mean pressure, 307
test condition effects, 297
Dilation, 706
rate
at failure, 680
peak strength, 684
Directional shear cell, 752–755
daisy chain shear sheets, 754
directional verification, 760–761
distribution of principal strain magnitudes and directions, 756
specimen corner, 757, 759
Direct shear test, failure law, 466
Direct tensile apparatus, 806
Displacement-controlled loading frame, 252–253
Drained compression tests, 382
bedding error, 292
don restraint, 291
lubricated end platens and slenderness ratio, 291–292
strength parameters, 292
volumetric strain, 382, 385
Drained constant strain-rate test, pore pressure distributions, 585–590
Drained cyclic straining simple shear test, 11, 20
Drained extension test, 379
Drained fine sand, 202
Drained monotonic compression test, stress control, 101, 103
Drained monotonic extension test, stress control, 101, 103
Drained monotonic shear loading, 125–127
Drained simple shear test, 11, 20
Drained stress path controlled shear, 129–130
sand, 130
Drained triaxial testing, 363
stress path, 423–424
Drammen clay
end friction and height/diameter ratio effect, 271–273
sample disturbance effect, 266, 268
Ductility, defined, 178
Dynamic loading, 132, 475

Effective stress, unsaturated soil, 539–552
anisotropic consolidation test, 545–546
constant suction, 547–549
failure stresses, 543–545
isotropic compression test, 542–543
specimen preparation, 541
test apparatus, 540–541
tests performed, 542
variable suction, 549–551
volumetric strain, 550
Elastic behavior, 132, 790–791
Elastoplastic behavior, unsaturated soil, 550
Electrical resistivity, 143
Electrolevel gauges, 50
Electronic transducers, 7
Electropneumatic transducer, 121–122
e-log p curves
anisotropic consolidation testing, 545
clay, 504–505
Shirasu, 505
Embarkment dams, 486–500
axial strain, direct measurement, 493–495
bedding effect, 491–493
coarse particles effect, 498–499
constant mean pressure triaxial compression tests, 498–499
deformation modulus, 490, 493
extension tests, 497–498
frictionless ends, 492–493
Grand-Maison Dam, 488–489
membrane penetration, 495–496
objectives of program, 488, 491
Vieux-Pré Dam, 486–487
End conditions, 692–704
cap rotation, 696–698
free horizontal movement of cap, 698, 700–702
friction angle, 693

versus void ratio, 694–696, 698, 701–702
kinematic condition effects, 696–702
lubricated ends, sample slenderness effects, 702–704
stress ratio, versus axial strain, 703–704
stress-strain curves, 695–697
with and without free horizontal movement of cap, 700–701
surface condition effects, 694–696
test conditions, 693
test program, 694
types, 694
End friction, reduction, 271
cohesionless soils, 42
comparison with frictional ends, 441
sample slenderness effects, 702–704
schematic, 442–443
End restraint, 442, 679–690
density and confining pressure, 683–684
drained compression triaxial tests, 291
particle breakage
and strength, 687–690
within specimens, 686–688
relationship between stress ratio, dilatancy, and particle
breakage, 689
stress-dilatancy relationship, 688
stress-strain-volume change relationship, 682–684
testing program, 681–682
volume change, 681
distributions within specimens, 684–686
Equal-volume method, 644
Equation of equilibrium, 776, 790
Equivalent consolidation stress, 521
Error, 421
apparatus compressibility, 430
area corrections, see Area correction
bedding, see Bedding area
conventional triaxial equipment, 446
evaluation, shear tests, 426–427
filter drain resistance, 431–432
frictional ends, 440–443
initial seating, correction, 314–315
membrane resistance, 430–431
piston friction, 432–433
pore pressure, 461
relative importance of corrections, 435
sources, 284, 491
temperature, 437–438
terminology, 427
Error—Continued

tilting, 436
undrained unconsolidated testing, 466
Expansive soils, 512
Extension moduli, membranes of different thicknesses, 719
Extension tests, 124–125, 455–456
embankment dams, 497–498
Grand-Maison filter material, 497
overconsolidated silty clay, 93
shear strength, 268
zones of weakness, 445
Extrusion, disturbance during, 235

F

Fabric anisotropy, 706, 709
Failure, 604, 706
bulging
area correction, 715–717
membrane correction, 720–722, 724
definition, 632–633
Failure criterion, 547, 853
Failure envelope, 324, 328, 523
ttrue triaxial testing cell, 829
weak rocks, 381–382
Failure law
direct shear test, 466
tensile strength, 170
Failure line, equation, 544–545
Failure mode, stress-controlled tests, 647
Failure patterns
kaolinite, 786–787
sand, 786
Failure stress
effective, unsaturated soil, 543–545
specimens with and without Teflon sheets, 840
ttrue triaxial testing cell, 826
Failure surface
octahedral plane, 828, 831–832
Rendulic stress plane, 839
Filter drain resistance, 431–432
Filter paper, 189–200, 270, 632
CIU tests, 198
consolidation and shear strength effects, 194–199
drainage capacity, 195–196
efficiency during consolidation, 200
heavily overconsolidated clay specimens, 272
shape, 667–678
consolidation, 671–674
occurrence of constriction, 677
sample preparation, 667–670
tensile strength, 677
testing procedure, 670–671
undrained shear behavior, 675–678
shear strengths, 198–200
side drain characteristics, 195
types, 668–669
water exchange with specimen, 238–239
Flexible boundary biaxial tester, 753
Flexible boundary true triaxial, 749–752
Flow model, 74–76
time response, 76–78
Flow pump applications, 68–80
compressibility values, 78–79
current-rate-of-deformation consolidation, 71–72
effective stress, 72–73
equipment, 69–70
models for analyzing flow-pump transport-property test data, 74–75
permeant subsystem, 70
response time and coefficient of consolidation, 74–79
specimen deformation with flow direction, 76–77
strain-path control, 79
very small strain compressibility and temperature effects, 72–73
Flushing, 245–246
potential problems, 246
Four-terminal phase-sensitive detection system, 148–149
Fredlund's failure criterion, 185
Free falling sphere, velocity in air and water, 407–408
Freezing, in situ, 234
Frictional ends, 440–443
comparison with lubricated ends, 441
Frictional parameter, 547
Friction angle, 523, 655, 692–693
as function of ρ, 662–664
cohesionless soils, 11, 18–19
peak, 578–579
versus relative density, 574
versus void ratio, 574–575
versus height/diameter ratio, 702, 704
sand, 655
stress path, 864
test condition effects, 296
ultimate, 578
variation
bedding plane inclination, 712–713
shear band formation, 621–622
versus void ratio, 659, 694–696, 698, 701–702
Frictionless ends, embankment dams, 492–493
Fulung sand, 681
 particle breakage distributions, 687–688
 stress-strain-volume change relationships, 682–683
 volume change distributions, 685–686
Fuse wire technique, 240–241

G
Gap sensor method, 854–855
Gas, 338
 bubble formation, mechanism, 342–344
 entrapment, within system, 244–245
 form, 340
 leakage, 439
 types and contents of marine environment, 338–339
Gas law, 342
Gas-water interfaces, 439
General purpose interface bus, 111
Geotechnology, 387
Glacial clay, stress path test, 91–92
Goodness-of-fit test, chi-square, 553, 556–559
Gradient, as function of hydraulic conductivity, 391–393
Grain crushing, evolution with mean pressure, 308
Grain shape, distribution, 707
Grain size, 567
 accumulation curves, 502
 distribution
 Grand Maison core material, 140
 sand, 293, 477
 Vieux-Pré material, 487
 effect, membrane penetration, 495–496
 shear strength, 570
 Young’s modulus effect, 140
Grand Maison core material, grain size distribution, 140
Grand-Maison Dam, 488–489
Grand-Maison filter material extension triaxial tests, 497
 isotropic test, 494, 496
 volume change, 496
Granular soil, 290–309
 creep rate, versus isotropic stress, 304, 306
density, 300–301
 experiments, 292–293
 grain crushing, evolution with mean pressure, 308
 grain size distribution, 293
high-pressure range, 298–299
high-pressure triaxial tests, 302–308
 internal homogeneity, tomodensitometric survey, 298–302
 procedure, 293–294
 strength parameters, 294–298
 stress peak dilatancy, rate evolution with mean pressure, 307
 stress peak friction angle, evolution with mean pressure, 306–307
 stress-strain-volume change curves, 304–306
 volumetric strain, versus time, isotropic creep tests, 303, 305
Granulometric curves, Grand-Maison filter material, 489
Gravel, 567
Griffith theory, 184

H
Hambly’s rigid boundary true triaxial concept, 747
Hazardous waste, 387
Height-to-diameter ratio, 706–713
 fabric characterization, 708–709
 representation of stress and material axes, 710
 specimen preparation, 708
 strength characteristics, 712–713
 stress-strain and volume change characteristics, 710–712
testing equipment, 709
High-pressure triaxial tests, granular soil shearing under high pressures, 306–308
test procedure, 302–305
time effects, material under isotropic compression, 305–306
High stress flexible boundary true triaxial, 749–750
Hill’s failure criterion, 827
Hoek-Franklin cell, 156
Hollow cylinder torsional devices, 766–788
 advantages, 768
 amplitude decay in resonant column tests, 779
 axial and shear strain measurements, 770–771
 compatibility equation, 777, 794
 crack and damage propagation, mode II, 787
damping ratio, 781, 783
degradation of shear modulus, 781, 783–785
dimensions of hollow cylinders, 775
Hollow cylinder torsional devices—Continued
elastic behavior, 790–791
equation of equilibrium, 776, 790
historical background, 767–769
horizontal strain-displacement equations, 790
instability in tension, 786–787
measuring devices, 770–772
Mohr circles, 778–779, 783
plastic behavior, 791–795
proximity gages, 770–771
resonant column tests, 779–781, 784
sample preparation, 772–774
shear modulus, versus strain, 780
slow cyclic loading, 784–785
specimen dimensions and boundary effects, 774–775
static tests, 786–787
stress path
constitutive equations, 779–784
proportional stressing, 784, 786
stress-strain relations, 775–779, 785
system of stresses and reference axes, 775
torsion shear tests, 790
triaxial cell, 769–770
Homogeneity, loss, 860
Hooke’s law, 790
Hoop stress theory, 721
modified formula, 722
Horizontal displacement, cohesionless soils, 49, 51–52
Hvorslev’s true friction-true cohesion strength parameters, 516–517
Hvorslev technique, 523
Hvorslev theory, 467
Hydraulic cell, loading method, 55
Hydraulic conductivity, 387, 391
coefficient, 392
definition, 388
effective stress as function of, 393
gradient as function of, 391–393
particle migration and, 393–395
pore volume displacement, 393–395
Hydraulic/physical parameter measurement, 143–153
apparatus, 145–147
collar-coupled load design concept, 147
normalized pressure difference versus log time for water, 147–148
permeability measurements, 147–148, 152
results, 150–152
schematic layout, 146
specimen preparation, 149
velocity and resistivity measurements, 148–149
Hydraulic-pneumatic loading system, see Combination hydraulic-pneumatic
loading system
Hydraulic stress path cell, 456–457
Hydraulic triaxial cell, stress path testing, 251–252
Hydraulic triaxial testing system
controlled stress path testing, 54–55
layout, 84
see also Computer controlled hydraulic triaxial testing system
Hydrogen sulfide, volume as result of pressure decrease, 343–344
Hydrostatic compression, 202
Hysteresis loop, cohesionless soils, 45–46

I

Independent stress control apparatus, 844–857
apparatus, 845–847
axial load, 845–846
axial stress, 844
deformation measurement
gap sensor method, 854–855
no-contact gap sensors, 848–852
device for σy loading, 847–848
independent stress-controlled test, 853–854
microcomputer control of principal stresses, 852
plane strain test, 851, 853
specimen sleeve, 848
Inductive device, 202
Influent equilibrium, 396–398
Influent reservoir, modified, 397
Intensifier-accumulator, 162–163
Interface unit, 99
Internal piston cell, 158–161
with temperature control chambers, 164–165
Interstitial membrane penetration, 212
Isotropically consolidated tests, limitations, 220
Isotropically consolidated undrained tests, 322–323, 325–327, 333
Isotropically consolidated undrained compression test, multistage, 357–361
Isotropic clays, 819
Isotropic compression test
effective stress, unsaturated soil, 542–543
time effects on granular materials under, 305–306
Isotropic consolidation, 82, 122–123, 732
stress-strain behavior, 451–452
true triaxial tests, 826
Isotropic strain hardening model, 607
Isotropic test, Grand-Maison filter material, 494, 496

K
Kaolin, 539
Kaolinite
deformation and failure patterns, 785–786
remolded, undrained true triaxial test, 829–831
undrained true triaxial tests, 825–826
Kerozene, 192
Kneading pressure, versus tensile strength, 176, 178, 182

\(K_0 \)-compression tests, automated, 59

\(K_0 \) consolidation, 68, 79, 82
anisotropic, 128–129
computer controlled hydraulic triaxial testing system, 89
stress path, 255
stress-strain behavior, 451–452
versus simplified consolidation procedure, 276–279

Kondner's hyperbolic interpretation, multistage triaxial compression tests, 360

\(K_0 \) triaxial apparatus
automated double-cell, 58
double-cell, 56–57
with internal pressure cell, 55–56

Kuwait, physiographic condition, 365–366
Kuwaiti soils, 363–374
deviator stress, 371, 373
location of sampling sites, 367
multistage test, 365
particle size distribution band, 370
pore pressure, 370, 372
properties, 368–369
sampling and testing program, 366–368
shear strength, 364–365
strength parameters, 372, 374
stress-strain curve, 370–372
variations of soil properties, 363
volumetric strain, 370–371

L
Laboratory shear testing methods
classification, 12–17
stress states, 9–10
Laboratory strength testing, cohesionless soils, 8–30
Laboratory testing
equipment, 7
problems, 202–203
Latex disks, compressibility, 493
Leakage, 189
effective stress effects, 190–191
from effects of hydraulic pressure differences and osmotic pressure difference, 192
external, 191, 438
gas, 439
internal, 438
minimizing, 200
rubber latex membrane, 194
sources, 190
triaxial test, 190–194
water, 438–439

Leighton Buzzard sand, physical properties, 101
Linear variable differential transducer, 134, 165, 202, 324, 799
alternating current, 205
attributes, 204
deformation measurement, 204–205
direct current, 203, 205
attachment, 207–208
Liquefaction, 642, 859
resistance to, 413
stress path, 647

stress-strain curves, 647
Liquefiable sands, see Cyclic triaxial strain-controlled testing
Liquid paraffin, rubber latex membrane effects, 193
Load cell, two component, 35
Load displacement, stress-strain curve, 604–605
Loading
rate, 443–445
repeated, 475
Loading frame, 155, 158–159
Load measurement
calibration loading result, 40
cohesionless soils, 38–40
Lode's parameter, 837
Lodgement tills, 592
Louiseville clay, geotechnical properties, 323
Low plasticity clays, 460–473
effective stress, 463–464
implications to sampling disturbance, 465–466
Low plasticity clays—Continued
loading history effects, 471–472
pore pressure induced by cell pressure, 462
residual pore pressure, 464–465
strength, versus depth, 462, 464
see also Reconsolidation

M
Marine sediments, with high gas contents, 338–350
gas
behavior due to microorganisms, 349–350
bubble formation mechanism, 342–344
evolving, 349
form present, 340
initially in bubble phase, 349
initially in solution, 347–348
interstitial bubbles, 341
release in soil, 342
volume as result of pressure decrease, 343–344
pore pressure, as function of degree of saturation, 346
stress difference and pore pressure change versus axial strain, 346–348
types and contents, 338–339
Mayne procedure, 469–470
Mechanical properties, 486, 706, 806
Membrane, 189
compressibility, 851, 853
diffusion through, contaminated soils, 398–400
flexible, 834
flow through, 192–193
properties, 718–719
silicone oil effects, 194
torsional resistance, 774
Membrane correction, 715
axial load and lateral restraint, 723
bulging failure, 720–722, 724
correction formula, 727
general procedure, 730
initial confining pressure, 719–720
lateral restraint, 721
observation of soil specimens, 728
shear plane failure, 724–728, 729
tests on dummies, 722–724
tests with rigid dummies, 725–727
unit friction, 728
Membrane-fluid cell, 810–816
characteristics, 816–817
cross-sectional drawing, 816–817
cutaway view, 814
longitudinal drawing, 815
Membrane penetration, 202, 486
effects on burette readings, 212
embankment dams, 495–496
grain size effect, 495–496
Membrane-piston cell, 806–817
characteristics, 815–816
cyclic compression-tension tests, 813
cyclic tests, 812
deflection, measuring device, 809–810
description, 807–809
membrane-fluid cell, 810–816
performance, 807, 809–811
plane-strain tests, 813
tension-compression tests, 809
Membrane resistance, 430–431
Membrane restraint
\(\phi \) effects, 43
triaxial compression tests, 43
Methane gas, volume as result of pressure decrease, 343–344
Methane-producing bacteria, 339
Microcomputer-based data acquisition systems, 107–117
analog-to-digital conversion, 110
background processing, 113–114
composite schematic of logging sensors and control switches, 109
control aspects, 111
control function routines, 115–116
data acquisition and control hardware, 109–112
data acquisition routines, 114–115
data storage, 112, 116
GPIB transmission, 111
objectives, 108
on-line display, 116–117
postprocessing, 117
RS-232C serial transmission, 110–111
signal acquisition, 110
signal conditioning, 110
signal processing, 111–112
signal sampling routines, 115
software, design, 112–117
stages, 107
system description routines, 114
Microcomputer control, 95
Microorganisms, pore gas behavior due to, 349–350
Misalignment
coned seating connections, 228–229
during shearing, 230
equipment, 230
errors due to, 227–230
screw and suction cap connections, 229, 231
specimen, 230
Mixed boundary true triaxial, 749
Mohr-Coulomb envelope, 180
Mohr-Coulomb failure criterion, modified, 528
Mohr-Coulomb failure law, 170, 182, 185
Mohr-Coulomb failure surface, 828
Mohr-Coulomb model, 553
Mohr-Coulomb’s equation, 364
Mohr-Coulomb strength criterion, 553
obtaining point estimates, 554
Mohr-Coulomb strength relationship, 513–515
Mohr-Coulomb yield law, 609
Mohr failure envelope
compacted fill, 633, 637
natural soil, 633–635
Mohr’s stress circles at failure, 354–356, 361, 852–853
continuously rotating principal stresses, 778, 783
synchronized proportional loading, 779, 783
Mohr strength envelope, 732
Monotonic loading system, stress- and strain-controlled, see Combination hydraulic-pneumatic loading system
Monotonic shear loading, 124–127
Monotonic simple shear deformation, 18
Multiaxial test, 834–843, 844, 859
apparatus, 835–836
design, 859
Lode’s parameter, 837
octahedral shear stress-octahedral shear strain curves, 838
plastic mean principal strain, 840
procedure, 837–838
relationship between increments of plastic strain and stress, 841–842
Rendulic stress plane, 839
rigid platens, 860
specimen, 836–837
stress path, 835
mean principal stress-octahedral shear stress plane, 842
Rendulic stress plane, 841
Multiaxial test cell, 806, 819–832
description, 820–822
deviator stress, 825
drained response, sensitive clay, 826–829
failure envelopes, 829
failure stress, 826
loading and failure surface in octahedral plane, 828, 831–832
octahedral plane, 824
sample preparation, 822–823
test procedure, 823–825
undrained response, anisotropic remolded clay, 829–831
undrained tests, kaolinite, 825–826
Multistage test, 363
advantages and disadvantages, 365
deviator stress, 371, 373
Kuwaiti soils, 365
Multistage compression tests, 353–362
deviatoric stress, versus strain curves, 358, 360
isotropically consolidated undrained test, 357–361
Kondner’s hyperbolic interpretation, 360
Mohr’s circles at failure, 361
normalized tangent undrained moduli, 358, 360
particle-size distribution curves, 355–356
procedures, 354–356
shear stress, versus strain, 359, 361
soil specimens, 356–357
stress-strain curves, 357
unconsolidated undrained triaxial compression test, 355–356, 358–359

N
Natural gas hydrates, 340
Natural soil
physical characteristics, 633, 636
sampling disturbance, 633–636
shear strengths, 638–639
Naxos marble, 811
No-contact gap sensors, 848–852
Noncontact devices, deformation measurement, 204
Nonlinear envelopes, 376

O
Ocean sedimentary/chemical environment, cross-section, 340
Octahedral shear strain-normal strain relationships, 829
Ottawa sand, 681
stress-strain-volume change relationships, 683
volume change distributions, 687
Overconsolidated soil, 592
Overconsolidation ratio, 442, 444, 600–601 versus pore pressure parameter A_f, 596–597
Oxygen demand, 339

Paraffin method, 270
Partially saturated soil effective stress, 514 schematic, 340–341
Particle breakage, 679 and strength, 687–690 distributions, 687–688 relation with angle of friction, 689 within specimens, 686–688
Particle migration, contaminated soils, 393–395
Percent dilatation model, 569 advantages, 575, 577 significance, 576
Perchloroethylene, 397–398
Permeability, 68, 143 laboratory testing, 388 measurement, 147–148, 152 response time and, 73–74
Permeameters, 387 schematic, 389
Phenomenological model, 321
Piezometer, midheight probe, 224
π-plane, stress states, 656, 658
Piston friction, 284, 432–433
shear-induced, 442
theoretical effect of saturation, 344–346
undrained compression, 595–602
undrained tests, 444
variation, 89–90
versus axial strain, 346–348, 672–673, 675
versus deviator vertical load, 482
Pore pressure distribution, 582–590
axial displacements, 588
axial strains and stresses, 589
boundary conditions, 587
drained constant strain-rate test, 585–590
equations of equilibrium, 584, 586
statement of continuity, 585
variation with time, 587–588
volumetric strain, 589–590
Pore volume displacement
contaminated soils, 398–399
hydraulic conductivity, 393–395
Poro-elasticity, Biot’s theory, 582–583
Prandtl-Reuss plastic strain increment-deviator stress, proportionality relations, 825
Preconsolidation stress, 276
clays, 266–267
Preshearing, 280, 282
Pressure, mean, versus volumetric strain, 211
Pressure cell, external, 7
Pressure control, 155
salt rocks, 161–165
Pressure measurement, cohesionless soils, 35–38
Pressure transducer, 98
integral solid state, 86
Probability, 553
Proximity gages, 770–771
Proximity transducer
measuring horizontal displacement, 49, 51
strain measurement, 134–135
Psychrometer, 512, 517
method, 173–174
PVC fluid carbons, 807

Q
Quasistatic cyclic torsional shear tests, 47–48

R
Radial strain, 132, 202
measurement, 135
versus axial strain, 736–737
Radial stress, effective, 36
Ratio relay, 121
Recompression technique, 448
Reconsolidation
clays, 253, 255
correcting for disturbance, 469–471
SHANSEP method, 254, 257
state surface concept, 466–469
volumetric strain, 266, 268
water content changes during, 253, 255
Reconstituted sand specimens, 405–416
air pluviation, 410
assessment of uniformity, 414
compaction methods, 405
densification of sand, 412
particle size and height of drop effects on void ratio, 409
pluviation, 406–407
procedure and uniformity, 411–414
relative density distribution, 414
replication, 414–416
resistance to liquefaction, 413
sample preparation method, 412–414
velocity at impact, 406–409
void ratio, 410
height of drop, mass pouring rate and particle size effects, 410–411
Reconstituted specimens, 240–242
undrained triaxial compression, 595
Regression analysis, 553, 555
Reid-Bedford sand, 202, 207
Relaxation tests, soft clay, 321–336
destructuration effect, 335–336
deviatoric stress, 333–334
normalized behavior, 327–328, 332
procedures, 322–327
relaxation curves, 334–335
soil properties, 322–323
yield and failure envelopes, 324, 328
Rendulic stress plane, 839, 841
Replication, reconstituted sand specimens, 414–416
Residual soil, see Piedmont residual soil
Resistivity, measurement, 148–149
Resonant column tests, hollow cylinder torsional devices, 779–781, 784
Response time
coefficient of consolidation and, 74–79
permeability and, 73–74
Reversing relay, 121
Rigid boundary biaxial tester, 748
Rigid boundary true triaxial concept, 747
Ring shear apparatus, 9
Rock, 806, 834
Rock mechanics, 107–109, 143
Rock salt, 143
Rose diagrams, particle long axis orientations, 707
Rowe's stress-dilatancy relationship, 609
RS-232C serial transmission, 110–111
R-type triaxial test, 643
Rubber latex membrane, 193–194
Rubber membrane
 compressibility, 851, 853
 error source, 284
Rupture surfaces, 445
Salt rocks, 155–167
 design approach, 155–156
 instrumentation and data acquisition, 165–167
 pressure application and control, 161–165
 temperature control, 165
Sample disturbance, 265–268, 421, 460–461, 475
 clays, 266, 268
 components, 461
 corrections, 469–471
 implications, 465–466
 loss of residual suction, 465
shear strength effects, 628–641
 compacted fill, 633, 636–639
 equipment, 631–632
 geotechnical conditions, 629–630
 major source, 636
 natural soil, 633–636, 638–639
 sampling procedures, 630–631
 soil properties, 630
 specimen preparation, 631
 testing procedure, 632
sources, 447
undrained triaxial testing, 447–448
Sample extrusion, 234–235
apparatus, 236–237
Sample preparation, 642
Cambridge true triaxial apparatus, 800–801
cohesionless soils, 40–41
cohesive soils, 235–236
deformation measurement, 207–209
filter paper shape, 667–670
hollow cylinder torsional devices, 772–774
multiaxial test cell, 822–823
reconstituted sand specimens, 412–414
tensile strength, 170–171
triaxial extension test, 279–280, 613–614
 see also Specimen
Sample slenderness, 655, 702–704
Sampling
 block samples, 630
 continuous sampler, 631
 thin-walled tube, 630–631
Sand, 95, 567, 643, 679, 706
 angle of internal friction, 655
 anisotropic consolidation, 129
 composition, 707
 consolidation path, 255, 257–259
 constant-volume cyclic simple shear deformation, 21
 description, 864
 drained stress-path-controlled shearing, 130
 dry, 859
 fabric anisotropy, 706
 fabric effect, 480
 failure patterns, 786
 flow-pump-permeability and coefficient-of-consolidation data, 73–74
 grain size distribution, 293, 477
 hollow cylinder torsional devices, 773
 initial, saturation, 275
 liquefiable, see Cyclic triaxial strain-controlled testing
 natural, 767
 normalized behavior, 468
 partly saturated, drained triaxial compression, 53–54
 properties, 613, 850
 reconstituted specimens, 274
 stress path, 861, 864
 triaxial strength, 655–665
 angle of internal friction as function of α, 662–664
 prismatic samples, 656
 sample size, 657
 strength anisotropy, 660
 stress states, π-plane, 656, 658
 stress-strain relations, 662–663
testing method, 656–659
 triaxial compression, 659–661
 triaxial extension, 661–662
 see also Reconstituted sand specimens
Sandy clay, shear strength, 531–535
Sandy silt, 850–851
 shear strength, 531–532
Sandy soil, 501, 655, 692
Saturated cohesive soils, 421–457
 apparatus compressibility, 430
 area corrections, 433–435
 axial correction, 431
INDEX 889

filter drain resistance, 431-432
membrane resistance, 430-431
piston friction, 432-433
problems, errors and corrections, 427-429
rate of loading, 443-445
rupture surfaces, 445
sensors, 429-430
strain rate-independent, 440
water leakage, 438-439
Saturation, 219, 243-248
at final state, 209
back pressure, 436-437
application, 275-276
causes of gas in system, 244-245
definition, 209
degree of, 245-246
flushing, 245-246
initial, 275
maintaining, contaminated soils, 395-396
methods, 245-248
process, 208
ramps, 82
Skempton's pressure parameter, 244
theoretical effect on pore pressure, 344-346
undrained steady state shear strength, 645-646
Seepage, 391
Sensitive clay, 819
drained true triaxial tests, 826-829
Sensor, 430
parameters used to quantify performance, 429
saturated cohesive soils, 429-430
temperature sensitivity, 437-438
Servo system, controlled stress path tests, 59-60
Seto sand
plane strain test, 851, 853, 856
triaxial compression test, 851, 853
SHANSEP, 252, 460, 448-449
consolidation states, 469-470
correcting for disturbance, 469-470
reconsolidation, 254, 257
Shear
simple, 7
torsional, 766
Shear band, 769, 859
critical condition, 606-608
predictions, 610
stress change inside, 607
Shear band formation, 604-627
bifurcation condition, 611
components of principal plastic strain increments, 609
constitutive model, 608-612
critical hardening modulus, 611-612
critical strain hardening parameter, 622-624, 626
elastoplastic coefficients, 607
friction angle variation, 621-622
incremental displacement gradients, 606
monotonic loading, 604
orientation angle, 611-612
patterns, 662
plane strain, 619-621, 625
plastic hardening modulus, 607-608
sand description, 613
specimen preparation, 613-614
stress path, 614-618
stress-strain response, 605
theoretical background, 605-606
triaxial compression, 615
triaxial extension, 615, 618-619
volume change rate, 609
Shear deformation, 501-511, 501
testing apparatus, 502-503
Shearing
high pressures, 306-308
misalignment during, 230
mode, 450-452
phase, 736
rate, 449-450
Shear modulus
degradation, 781, 783-785
initial, 264, 286
comparison of resonant column and bender element, 286
from bender elements, 284-287
from benders and resonant column measurements, 256, 258
from shear wave measurements, 256-257
versus strain, 780
Shear plane failure, 715
area correction, 716-718, 729
membrane correction, 724-729
Shear resistance, 609
Shear strain
clays, 232-233
measurement, 770-771
octahedral, 834
apparent
as a result of suction, 525, 527
as function of axial strain, 528
intercept, 715
Shear strength—Continued
components, cohesionless soils, 567
compression tests, 268
contaminated soils, 387, 400
extension tests, 268
factors affecting, 639–640
filter paper effects, 194–199
grain effect, 568–569
grain size, 570
Kuwaiti soils, 364–365
measurement, 745
undrained, 460
variation with strain rate, 449
versus effective consolidation pressure, 676
undrained steady state, 642–653
comparison of testing procedures, 653
consolidation, 646
equal-volume compaction, 644–645
equipment, 643–644
loading, 646
parameter \(\alpha \), 648
saturation, 645–646
specimen material, 643
specimen preparation, 644–645
steady state line, 649
steady state strength, 648–651
strain- and stress-controlled loading, 649, 652–653
unsaturated soils, 513
unsaturated specimens, 524–526
boulder clay, 530–531
with and without lateral filter drains, 198–200
see also Sample disturbance, shear strength effects
Shear strength law, 183
Shear strength parameter, probabilistic characterization, 547, 553–565
bivariate beta modeling of \((c, t)\), 561, 563–565
bivariate normal modeling of \((c, t)\), 563
chi-square goodness-of-fit test, 556–559
data, 559–560
literature review, 554
parameters \(c \) and \(t \), 560, 563
procedure, 554–555
regression between \(\sigma_1 \) and \(\sigma_3 \), 559–562
variances, 555–556
weighted regression analysis, 555
Shear stress
acting with normal stresses, 758–759
area correction effect, 433–434
causing strain equalization, 230, 232
influence of various corrections, 435
octahedral, 827, 834
torsion, 792–793
versus angle normal to bedding plane, 23, 27–28
versus axial strain, 355, 359
versus principal stress angle, 23
versus shear distortion, 22–23, 25–26
versus strain, 359, 361
versus vertical strains, 354
Shear stress-principal strain curve, 838–839
Shear stress-shear strain curve, octahedral, 838
Shear testing, 796
Shear wave velocity, 257, 286
Shirasu
\(e\log p \) relation, 505
grain size accumulation curves, 502
physical properties, 502
stress-dilatancy relation, 509
stress-strain relation, 506–508
void ratio, 504
Signal conditioner, 98
Silicone oil, membrane effects, 194
Silt, initial, saturation, 274–275
Silty clay
compaction curves, 172–173
description, 172
overconsolidated, undrained extension tests, 93
particle-size distribution curves, 355–356
partly saturated, automated \(K_0 \)-compres-
sion tests, 59
properties, 630
stress-strain curve, 178–180
suction-water content relationship, 173–175
Simple shear test, 475
Simplified consolidation method, 456
versus \(K_0 \) consolidation, 276–279
Skempton's pressure parameter, 244
Skin effect, 299
Slenderness ratio, 290, 492
lubricated end platens and, 291–292
reduced, 295
Slow cyclic loading, hollow cylinder torsio-
 nal devices, 784–785
Small strain zone, effects of consolidation paths, 253, 256
Smooth end techniques, 284
Soft clay, 715
overconsolidated, 728
static undrained triaxial tests, 280–281
see also Relaxation tests, soft clay
Soft rocks, design requirement for testing, 107
Software
automated triaxial testing system, 100–101
design, 112–117
flexible device-independent, 108
flow-chart for data acquisition and control, 113
Soil-bentonite material, 388
Soil disturbance, degree of, 259
Soil mechanics, 353, 387, 706, 796
Soil suction, 169, 512
Soil test, 806
Specimen
disturbance, 219
height, heavily overconsolidated clay specimens, 271–274
mounting, 268–274
heavily overconsolidated clay specimens, 271–274
normally and slightly overconsolidated clay specimens, 270
reconstituted specimens, 274
preparation and installation, 232–234
see also Sample preparation
Split-barrel sampler, 629, 631
Stage testing, 68
State, critical, 460
Statement of continuity, 585
State of stress, isotropic function of, 793
State surface concept, reconsolidation, 466–469
Static cyclic loading, stress-strain-volume change relationship, 684–685
Static loading, 132
Static tests, 280–281
hollow cylinder torsional devices, 786–787
Static torsional shear testing, loading system, 34–35
Static undrained tests, soft clay, 280–281
Statistics, 553
Stiffness, 219
curve, from local measurements of axial displacement, 225–226
internal and external measurements, 230–232
parameter, 223
Strength
height-to-diameter ratio, 712–713
versus depth, 462, 464
Strength anisotropy, 655, 660
Strength difference, normalized, 576–578
Strength envelopes, 648–649
Strength parameter, 223
drained compression triaxial tests, 292
granular soil, 294–298
Kuwaiti soils, 372, 374
modified, 365
normalized, 523, 524, 527
weak rocks, 381–382
Strength ratio, undrained, 450–453
Strength relationship, normalized, 523
Strength tests, 512
Stress
deviator, 127

difference angle with strain increment, 865–866
distribution, truncated specimen, 378
effective
as function of hydraulic conductivity, 393
drying effects, 237–238
factors affecting, cohesive materials, 234
leakage effects, 190–191
Stress, effective—Continued
low plasticity clays, 462–463
measurement in clays, 243
partially saturated soils, 514
time required for equalization, 243–244
unsoaked and soaked membranes, 238–239
high, 376
initial effective, 219
measurement, 861–862
normal, acting alone, 757–758
principal
angle versus effective axial stress ratio, 23
angle versus shear distortion, 24
angle versus shear stress, 23
cyclic circular stress path, 864
mean, 834
microcomputer control, 852
space, 823–824
variation with time, 801–802
irr. terms of strain, 584
very shallow specimens, 279
Stress coefficient, progress, 852
Stress control
axial, 121
failure mode, 647
stress path, 861–862
undrained steady state shear strength, 649, 652–653
Stress corrections, cohesionless soils, 41–42
Stress-coupled hydraulic/physical tests, 143
Stress difference, versus axial strain, 346–348
Stress-dilatancy relation, 501, 509–510, 688
Stress failure envelope, effective, 676–677
Stress history, 460
Stress path, 82, 119, 219, 486, 766, 796, 834, 859–869
advantages, 258
back pressure-saturated test, 522, 524
cohesionless soils, 29
computer control, 252
control, 121
cyclic loading, 127
differential hydraulic system, 54–55
drained monotonic loading, 125–127
undrained monotonic loading, 124–125
controlled, 7, 61, 862–863
servo system, 59–60
cyclic circular
definition and parameters, 862
deviatoric plane, 862–868
$SD2/S1$ values, 863, 865, 868
test principle, 864–865
velocity, 865
temperature change, 866, 868–869
deviatoric, 802–803
difference angle between stress and strain increment, 865–866
drained, 258, 260, 423–424
effective
air-pluviated Toyoura sand, 25
cohesionless soil, 22, 24–26
cohesionless soils, 28, 30
compacted fill, 633, 637
low plasticity clays, 463–464
natural soil, 633–635
unconsolidated undrained tests, 225, 249
equipment, 860–861
failure line, 734
friction angle, 864
gradient, 379
hollow cylinder torsional devices, 779–784
hydraulic triaxial cell, 251–252
K_o consolidation, 255
liquefaction, 647
localization of deformation, 861, 863–864
looped, strains along, 542
mean principal stress-octahedral shear stress plane, 842
measurement, 861–862
methods, 250–252
multistage triaxial testing, 732–738
modified test procedure, 735–737
significance of changes in test procedures, 737–738
stress states, imposed by test procedures, 733–735
orthogonal pairs of view, 802
Piedmont residual soil, 317, 319
proportional stressing, hollow cylinder, 784, 786
Rendulic stress plane, 841
sand, 861, 864
shear band formation, 614–618
shearing, 126
slow and fast compression tests, 441–442
soft clay, 280–281
specimen preparation, 863
strain dependence, 545–546
strain increment, direction, 863, 866
stress control, 861–862
to failure, 258
test on glacial clay, 91–92
triaxial cell, 252–253
true triaxial test, 835
Vieux-Pré material, 489
Stress peak dilatancy, rate evolution with mean pressure, 307
Stress peak friction angle, evolution with mean pressure, 306–307
Stress points, p-S plane, 541–542
Stress rate, control, 834
Stress ratio, 508
effective axial, 23, 26
principal, change in, 30
stress-strain curve, 827
test condition effects, 294–295
versus axial strain, 703–704
Stress rotation, principal, 743
Stress state
at failure of soil, 9–10
cohesionless soils, 8–30
dead zones, 440
imposed by test procedures, 733–735
π-plane, 656, 658
Stress-strain curves, 353, 421, 501, 539, 667, 706, 715, 743, 806
anisotropic sand, 785
clay, 506–508
cohesionless soils, 573
comparative, 760–761
constitutive, 583
corrected, 760, 762
cubical devices, 759–760
dense samples, 695–696
effects of consolidation paths, 255, 257
effects of end friction and height/diameter ratio, 272, 274
failure modes, 662–663
height-to-diameter ratio, 710–712
Kuwaiti soils, 370–372
liquefaction, 647
load displacement, 604–605
loose samples, 695, 697
multistage compression tests, 357
multistage test, 734–735
p-constant compression, 548–549
Piedmont residual soil, 316–318
plane strain, 619, 625
Shirasu, 506–508
soft clay, 280
stress ratio, 827
Toyoura sand, 507–508

triaxial compression, 615, 619–621
triaxial extension, 615, 618, 622–623
undrained, 451
extension test, 674–675
with and without free horizontal movement of cap, 700–701
Stress-strain volume
change curves
dense calcareous sand, 304–306
Fuling sand, 682–683
Ottawa sand, 683
static cyclic loading, 684–685
Tamsui River sand, 683
Vieux-Pré Dam, 490, 492–493
Stress-void ratio curves, cohesionless soils, 573
Suction, 539
apparent shear strength due to, 525, 527
constant, effective stress, unsaturated soil, 547–549
matrix, 513
osmotic, 513
total, 512–513, 520
variable, effective stress, unsaturated soil, 549–551
Suction-water content relationship, compacted soils, 173–175

T

Tamping, 241–242, 773
Tamsui River sand, 681
particle breakage distributions, 688
stress-strain-volume change relationships, 683
volume change distributions, 686
Tangent modulus, normalized, multistage compression tests, 358, 360
Temperature
control, 155, 165
error, 437–438
Tensile strength, 169
correlation between effective stress and suction, 183
direct versus indirect tests, 169–170
empirical relationship, 185
failure laws, 170
filter paper, shape, 677
Fredlund’s failure criterion, 185
Griffith-type theory, 182
material description, 172
Mohr-Coulomb envelope, 180
Mohr-Coulomb failure law, 170, 182, 185
Tensile strength—Continued
sample preparation, 170–171
stress-strain characteristics, 178–180
tensile test, 170–172
test methods, 169–170
test program, 174–176
theories, 180, 182–183
versus kneading pressure, 176, 178, 182
versus suction, 175–178
versus water content, 186
Tensile stress, limiting, 379
Tensile test, 169
equipment, 170–171
procedure, 171–172
Tension compression, 806
membrane-piston cell, 809
TEST, 100
Thin-walled tube, 630–631, 636, 638
Till, 592
Tilting, 436
Time response, flow model, 76–78
Tokyo Bay clay, hysteresis loop, 45–46
Tomodensitometer, 290
internal homogeneity, granular soil, 298–302
Top cap tilt, 284
Torsional shear, 7
hollow cylinder torsional devices, 790
membrane restraint, 43
Toyoura sand, 501
air-pluviated, 11, 18–19, 25
e-log p relation, 505
grain size accumulation curves, 502
properties, 502, 656
saturated, 693
strain distribution, 855–856
stress-dilatancy relation, 509–510
stress-strain relation, 507–508
void ratio, 504
Transfer functions, convert triaxial test measurements to engineering parameters, 426
Transient pore fluid behavior, 153
Triaxial apparatus, 264–265
schematic, 40, 42
Triaxial cell, 7, 631–632
axial and torsional stresses, 769–770
Bishop Wesley stress path cell, 55
computer controlled hydraulic triaxial testing system, 82–84
connections, 227–228
cyclic triaxial strain-controlled testing, 478
cyclic undrained test, 32–33
design, 156–157, 771
double-cell, 56–57
external tie bars, 227–228
failure in compression or failure, 423
flow pump applications, 69
hollow cylinder torsional devices, 769–770
hydraulic, see Hydraulic triaxial cell
improper alignment, 34
intensifier-accumulator, 162–163
internal piston cell, 158–161
internal tie bars, 228–229
leakage, 191–192
loading frame, 158–159
membrane-fluid cell, 810–816
modified, 324
new, 191
1-½-m.-diameter samples, 31
permeameter system, 389
pressure seals, 156
standard, 324
stress path testing, 252–253
structure, 30–35
30-cm.-diameter samples, 32–33
triaxial extension tests, 380
types, 503
using mercury to surround rubber membrane, 52–54
view of sample, 31
volume change device, 98
with double measuring device, 132–142
axial strain measurement, 134–135
description, 133–134
drained stress-strain path, 141–142
grain size distribution, 140
load measurement, 134
modulus at low strains, 136–137, 139–140
monitoring system, 136
Poisson’s ratio, 141–142
pore pressure, measurement, 135–136
prospects for future, 142
radial strain, measurement, 135
sample size effect, 139–142
variation of volume and irreversible strain, 138–139
variations of moduli as function of vertical strain, 141
Young’s modulus, versus sample diameter, 139
with external pressure cell, 32, 34
with pressure cell outside tie rods, 32
Triaxial compression, 202, 376, 453–454, 539, 655, 692, 844
connections, 229–230
canstant mean pressure, 498–499
cylindrical specimens, 221
drained, partly saturated sand, 53–54
high stress, 380
membrane restraint, 43
partially saturated soils, 512–535
boulder clay, 529–530
consolidated-drained, 515–516
constant water content, 516–517
failure envelope, 523
laboratory investigation, 516–517
laboratory testing equipment, 517–518
literature review, 512–516
saturated tests, 522–524
soil and specimen preparation, 518–519
unsaturated tests, 524–527
plastic hardening modulus, 609
sand, 659–661
Seto sand, 851, 853
shear band formation, 615
specimen preparation, 613–614
stress path, 615–617
stress-strain curves, 615, 619–621
Triaxial compression strength, compared with plane strain compressive strength, 660
Triaxial creep cell, 157
Triaxial extension test, 82, 376–385, 655
axial stress, 378
connections, 229–230
critical condition, 624
cylindrical specimens, 222
equipment, 380
failure envelope, 381–382
plastic hardening modulus, 610
sand, 661–662
shear band formation, 615, 618–619
specimen models, 378–379
specimen preparation, 379–380, 613–614
strength parameters, 381–382
stress path, 615–617
stress-strain curves, 615, 618, 622–623
Triaxial permeability testing, long-term, variables, 402–403
Triaxial plane, 222
Triaxial shear tests, error evaluation, 423, 426–427
Triaxial testing, sources of problems, 427–429
Trimming, 264
True triaxial test, see Multiaxial test

U

Ultimate strength, 567
Unconsolidated undrained test, 169, 219, 248–250
effective stress paths, 225, 249
error, 466
limitations, 220, 250
shear stress causing strain equalization, 230, 232
shortcomings, 248–249
unsafe strengths, 453–454
Unconsolidated undrained compression test, multistage, 355–356, 358–359
Undrained compression test, 592–602
equipment and instrumentation, 594
laboratory tests, 593–595
pore pressure, 595–602
reconstituted specimens, 595
reference section, 598–599
shear stresses versus axial strains, 355, 359
Undrained creep tests, 281
Undrained cyclic loading test, constant P, 105–106
Undrained extension test, stress-strain relationships, 674–675
Undrained monotonic compression test, stress and strain control, 101–102, 104
Undrained monotonic extension test, strain control, 102, 104
Undrained monotonic shear loading, 124–125
Undrained shear behavior, filter paper, shape, 675–678
Undrained strength, 421
Undrained triaxial test, 363
in situ undrained strength ratios, 452–453
mode of shearing, 450–452
rate of shearing, 449–450
recompression technique, 448
role in engineering practice, 454–455
sample disturbance, 447–448
Unsaturated soil, 512
compaction curves, 541
effective stress, see Effective stress, unsaturated soil
elastoplastic behavior, 550
extended Mohr-Coulomb strength relationship, 514–515
triaxial test apparatus, 540
Unsaturated triaxial test specimens, shear strength, 524–526

Vertical strain, versus shear stress, 354–356
Vicksburg buckshot clay, 519–521
Vieux-Pré Dam, 486–487
axial stress, 491, 494
stress path, 489
stress-strain volume, 490, 492–493

Void ratio
applied stress relationships, 521
critical, 573, 642
height of drop, mass pouring rate and particle size effects, 410–411
particle size and height of drop effects, 409
Reid-Bedford sand, 207
Shirasu, 504
suction relationship, 520–521
Toyoura sand, 504
versus coefficient of compressibility, 543
versus friction angle, 659, 694–696, 698, 701–702

Volume change, 679
cohesionless soils, 49, 51–54
distributions
Fulung sand, 685–686
Ottawa sand, 687
Tamsui River sand, 686
within specimens, 684–686
end restraint, 681
height-to-diameter ratio, 710–712
suction change and, 543
versus stress, 866, 868–869

Volumetric strain, 132
calculation, 146
clays, 265–266
drained compression test, 382, 385
due to membrane penetration, 214
effective stress, unsaturated soil, 550
generated by drained cyclic loading, 138
Kuwaiti soils, 370–371
versus mean pressure, 211
pore pressure distributions, 589–590
reconsolidation, 266, 268
specimens with and without lubricated ends, 684
test condition effects, 294–295, 297
variation with length of stress path, 803–804
versus ε, 209, 211
versus time, isotropic creep tests, 303, 305

Water content
change and suction, 551
changes due to drying, 236–237
changes during reconsolidation, clays, 253
change with monotonic and repeated loading, 543–544
equation, 551
suction change and, 543
versus effective consolidation pressure, 670–672
Water evaporation, rate, 51–52
Water exchange, 238–239
Water migration, 233
Water pluviation, 411–412
WATSALT Laboratory, 155
Wave velocity, 143, 148
Weak rocks, 376
physical properties, 383
strength properties, 381–384
test results, 384
Wheatstone bridge, 38
Withdrawal test, time response, 76, 78
Wykeham Farrance triaxial cell, 314, 366

X-ray attenuation, 298–299

Yield envelopes, 324, 328
Yield functions, 550
Yield surface, Rendulic stress plane, 839
Young's modulus
axial strain effect, 137–138
effective consolidation stress effect, 137
effect of maximum grain size, 140
versus sample diameter, 139