Subject Index

A
- Acoustic emission, 183
- Adherend flexural stiffness, effect, double cantilever beam, 126-128
- Adherend modulus, chevron-notched specimens, 80-81
- Adherend transverse stiffness, effect, double cantilever beam, 128-130
- Adhesive, as fastener, 265
- Adhesive carrier cloth, 163
- Adhesive failure, versus temperature, 285
- Adhesive failure criterion, 214
- Adhesive nonlinearity, 209
- Adhesive thickness, effect, double cantilever beam, 126-127
- Aerospace adhesive joints, 289
- Aircraft primary structure, 264-275
 - adhesive as fastener, 265
 - adhesive shear stress-strain properties, 273-274
 - extensometer for shear strain, 265-269
 - F-18 aircraft, bonded attachment of wing to fuselage, 272-274
 - fatigue test data, 273
 - FM 300K adhesive quality control, 273-275
 - joint design, 265
 - Krieger extensometer test method, 265-268
 - stress analysis, 264
 - see also Skin-doubler specimen
- Alignment, 5
- Aluminum, 39, 252
 - adherends, 277
 - fracture toughness, 81
- DCB specimens
 - elastic stresses, 122-125
 - interface stress distributions, 125
 - stress distribution, 122-124
 - yield zone area and height, 130-131
- double-lap joint, 41
- Apparent modulus, 58
- Applied moment, 100
- Araldite, 14-15
 - stress-strain behavior, 16
- ASTM A 36, 241
- ASTM A 325, 232
- ASTM A 588, 232
- ASTM D 429, 84
- ASTM D 897, 5
- ASTM D 903, 84
- ASTM D 1002, 292, 294
- ASTM D 1781, 84
- ASTM D 3167, 84, 294
- ASTM D 3433, 184
- ASTM D 3933, 292, 294
- ASTM D 3983, 28, 54
- ASTM E 229, 28, 54
- Asymptotic analysis, 39, 43
- Asymptotic expansion, 145
- Asymptotic expansion method
 - matched, moderately thin joints, 152-155
 - stress distribution, 150

B
- Beamsplitter, 17
- Bimaterial constant, rubber-to-metal bonds, 87
- Blister specimen
 - deflections and predictions, 85-88
 - elastomers, 85-87
 - strain energy release rate, 87
- Blister test, 83
 - rubber-to-metal bonds, 84-86
 - see also Mixed-mode debonding
- Boeing wedge specimen, 93
- Bolts, 229
 - ultimate shear strength, 250
- Bolts-to-member strength ratio, 231-232
- Bonded joint
 - chevron-notched specimens
 - load relaxation, 71-73
 - wedge opening, 73-75
 - cyclic stress durability, 290
 - environmental durability, 289
 - environmental effects, fracture, 276
 - shear stress distribution, 277-278
 - static strength, 229
- Bonded system, integral equations formulation, 225-227
- Bond endurance, 289, 295-296
- Bond integrity, 290
- Bondline
 - thickness, 252
 - ultimate shear strength, 249
- Bond strength, 5, 43
 - button tensile adhesion tests, 10
ADHESIVELY BONDED JOINTS

Bulk specimen, 54
Butt joint, 54, 67
 elastic analysis, 137-141
 elastic parameters, 55-58
 finite element meshes, 57
 normal stress distribution along interface, 139, 141-143
 schematic, 138
 shear stress distribution along interface, 139-142
 specimen, 56
 geometry, 138
Button tensile adhesion tests, 5-12
 alignment index, 11
 alignment problems, 6-7
 bond strength, 10
 grips, 5-6
 with ball joint added, 7, 9
 modified, 7-8
 hydraulic shock absorbers, 7-8
 linkages, 5, 7
 specimen, 6
 test
 with modified grips, 11
 with standard grip, 9-11

Cathodic debonding process, 85-86, 95
Chevron-notched specimens, 69-81
 adhesive thickness influence, 79
 data reduction, 71-76
 experiment, 70-71
 fracture energy, 75
 direct measurement, 77-78
 fracture toughness, 75
 geometric factors, 76
 influence of adherend modulus, 80-81
 load relaxation, 71-73
 load versus mouth opening displacement, 71-72
 mouth opening rate influence, 78-79
 reproducibility, 77
 specimen dimensions, 70
 test temperature influence, 79-80
 very thin joint approximation, 75
Chisholm-Jones shear specimen, 30, 32, 35-36
Clamped beam, compliance, 185
Cleavage test, 184
Compact tension specimen, geometric factors, 76
Compliance
 calibration of contoured TDCB specimen, 170
 clamped beam, 185
 double cantilever beam specimens, 185
 as function of crack length, double cantilever sandwich beam, 92-93
 Compliance-stiffness matrix, 136-137
 Composite materials, 39, 145, 194, 209
 fibrous, 210
 Conformal mapping, 145
 very thin joints, 155-157
 Continuity conditions, 133
 Corrosive environments, 83
Crack closure, 276
Cracked-lap-shear specimens, 195
 crack growth rate, 164
 critical value of strain-energy-release rate, 164
 debonded surfaces, 200-201
 preparation and configuration, 195-196
Crack growth
 beneath adhesively bonded doubler, 210
 mixed-mode I-III, scarf joint, 166
Crack growth rate, 163
 cracked lap shear specimen, 164
 double-cantilever-beam specimen, 164, 171-179
 0° scarf angle, 172-174
 45° scarf angle, 173, 175
Cracking, 163-182
 fracture toughness, 167, 171
 initiation, finite element analysis, 279-281
 materials, 167
 profiles, following growth reinitiation, 19, 21
 specimens, 166-167
 velocity, chevron-notched specimens, 78-79
Crack length
 compliance as function, 92-93
 stiffness as function of, 102-103
Crack mouth opening rate
 influence on fracture toughness, 78
 velocities, 78
Crack mouth opening displacement, versus
 load, chevron-notched specimens, 71-72
Crack opening displacement
 critical plastic, 26
 examination, 19, 21-26
 linear elastic fracture parameters, 21-22
 measurement, 17
 near-tip, 24-25
 nonlinear fracture parameters, 22, 24-26
 profiles, 19, 21
 variation of ratio of tangential and normal, 22-23
Crack opening interferometry, 13, 16
Crack propagation, 39
Crack tip, 119
 stress distribution ahead of, 123-124
Cyclic stress durability, 289, 301
apparatus layout, 290, 292
bonded joint, 290
bond endurance, 295–296
fixture, 293
specimen configuration, 292, 295

Debond
fracture energy, 95
growth rates, 202–205
length, versus fatigue cycles, 197
mechanism, woven Kevlar composites, 197–199
power-law relationship, 203
predicted, stringer, 209, 214, 217–223
linear adhesive, 218–220
nonlinear adhesive, 221–222
propagation, 194
size and shape effect on stress–intensity factor, 215–217
Delamination, stress ahead of, double cantilever beam, 122–123
DIN 54451, 54–55, 59
Displacement equations, continuity, 226
Displacement fields, 107
Double cantilever beam, 83, 305
comparison of aluminum and graphite/epoxy specimens, 126, 129
compliance, 185
countoured, 168–169, 184
crack growth rate, 164, 171–179
critical strain-energy-release rate, 164, 185
elastic stresses, 119–132
aluminum specimens, 122–125
finite-element analysis, 120–122
graphite/epoxy specimens, 125–130
yield zone estimates, 130–131
geometric factors, 76
material properties, 121
specimen configuration and loading, 120–121
stress intensity factor, 121–122
Double cantilever sandwich beam
Boeing wedge specimen, 93
compliance as function of crack length, 92–93
fixture for compliance measurement, 91–92
iso-G loading, 93–95
peel stresses, 95
rubber-to-metal bonds, 90–96
specimen dimensions, 92
surface strain as function of crack length, 93–94
viscoelastic dissipation, 92

Double-lap joint, 39–53, 145
configuration, 41
deformations curves, 45, 48
displacement field, 151–152
equipment, 42
extensometric strain gages, 42–43
joint unevenness, 50–51
longitudinal stress, 42
matched asymptotic expansion method for moderately thin joints, 152–155
micocracks, 52
numerical method, 47–48
outer adherends, 46
plastic adaptation, 52
rectangular, elastic equilibrium, 149–151
schematic, 147–148
simplified theory, 46–47
specimen preparation, 43
stresses far from lap ends, 151–152
subjected to shear in traction, 45, 48
tangent modulus, 45, 48–50
theory, 43–46
undergoing traction force, 151
very thin, conformational mapping, 155–157
Young's modulus, 152
Dynamic mechanical analysis, 301

EA9309.2NA adhesive, load rate dependency, 11
EA9321 adhesive system, shear stress–strain curve, 37
Elastic analysis, butt joints, 137–141
Elastic equilibrium, rectangular double-lap joint, 149–151
Elasticity
generalized matrix, 136	
two-dimensional, 133
Elastic limit, 39
Elastic parameters, 54–67
bulk constants, 60–61
gradients, 63
in situ constants, 55–60
butt joint, 55–58
evaluation, 60
thick adherend lap shear joint, 58–60
sensitivity of in situ and bulk methods, 66
verification, 62
Elastic stress
double cantilever beam, 119–132
graphite/epoxy, 125–130
Elastic stress analysis, 54
Elastomer, 83
blister specimen, 85–87
bonds, tests, 84–85
Elastomer-to-metal bonding, 84
Environmental durability, 289-303
floating roller peel strengths, 298-299
glass transition temperature, 298-299
materials and processing parameters, 294-295
mechanical analysis, 297-298
mechanical tests, 294
shear storage and loss moduli, 299-301
stress durability, 290-292
stress hygrothermal analysis, 295-297
thermal analysis, 298-301
thermal spectroscopy, 292, 294
Environmental effects, fracture, 276-287
adhesive failure versus temperature, 285
aluminum adherends, 277
analysis, 279-283
critical failure loads versus degree of adhesive failure, 286-287
experiments, 277-279
finite element analysis, 279-281
glass transition temperature, as function of moisture, 279
Mode I fracture energy versus temperature, 284-285
shear modulus, versus temperature, 278-279
stress-energy-release rate, 281-282
ultimate shear stress, versus temperature, 278-280
Epoxies, 5, 14, 39, 108, 252
cracking, 69-70
determination of specimen stiffness, 103
double cantilever beam, 121-122
Epoxies, 5, 14, 39, 108, 252
cracking, 69-70
determination of specimen stiffness, 103
double cantilever beam, 121-122
Floating roller peel strengths, 298-299
FM 300K, 55
Fracture, 39
appearance, scarf joints, 174-175, 180-181
see also Environmental effects, fracture
Fracture energy, 13-14
shear strain, 265-269
strain gages, 42-43
see also Krieger extensometer test method
F-18 aircraft, bonded attachment of wing to fuselage, 272-274
Failure mechanisms, 305
Failure loads, critical, versus degree of adhesive failure, 286-287
Fatigue cracking, 69-70
Fatigue damage mechanism, 195
Finite element analysis, 28, 54, 101, 119, 252
crack initiation, 279-281
elastic stresses in DCB specimens, 120-122
tube-and-socket joint, 257-258
woven Kevlar composites, 199-202
Finite element model
boundary conditions at edge point, 141–142
butt joints, 137–141
compliance-stiffness matrix, 136–137
continuity conditions, 133
degree effects, 141
elementary load vector, 136
elimination process, 134–136
generalized elasticity matrix, 136
rectangular finite elements derivation, 134–137
relocalization process, 136–137
stress vectors, 134
triangular finite elements derivation, 135, 137
Young's modulus ratio effects, 140–141
Iso-G loading, 93–95

J
Joint
design, 265
gallery, 252
see also specific types of joints

K
Kolossov functions, 156–157
Krieger extensometer test method, 265–268
data reduction, 267–268
shear stress-strain curve, 267–268
tube-and-socket joint, 254

L
Lagrangian strain-displacement relations, 113–114
Lap shear tensile strength, after hygrothermal exposure, 298
Linear elastic fracture mechanics, 21–22, 276
Load vector, elementary, 136

M
Mechanical analysis, environmental durability, 297–298
Mechanical properties, 39
Microcrack, 52
progressive initiation and flaw fast propagation, 49
Microdefects, 43
Microstrains, along outer surfaces of adherends, 49
Mixed finite elements, 133
rectangular, 134–137
triangular, 135, 137
Mixed-mode debonding, 13–27

examination, 19, 21–26
measurement, 17

N
Napkin-ring method, 28
Nonlinear fracture parameters, 22, 24–26

O
Orthotropic materials, 209
Overlap length, 252
tensile failure load versus, 258–259
Overlap joint, stress analysis, 253

P
Paste adhesives, 252
Peel stress, 281
Plastic adaptation, 52
Plastic zone size, chevron-notched specimens, 79
Plate theory, 85
Potential energy, relation to stress intensity factor, 99
Power law exponent, 24, 26
Pure shear testing, 28
316 ADHESIVELY BONDED JOINTS

R
Radial stress, distributions along tube-and-socket joint overlap, 258–260
Ramberg-Osgood relation, 16
R curves, Mode I opening, 189–192
annealed galvanized steel, 191
hot galvanized steel, 190
Reissner’s variational principle, 134
Replication technique, 107, 109
Rubber-to-metal bonds, 83–96
bimaterial constant, 87
blister specimen, 85–87
blister test, 84–86
cathodic debonding process, 95
debonding fracture energy, 95
debond rates, 89
double cantilever sandwich beam, 90–96
experimental setup for accelerated cathodic delamination, 93–95
strain energy, 87
strip blister specimen, 87–90
tests, 84–85
Running cracks, 70

S
Scarf joint, 54
with clip gages applied, 63
finite element mesh, 64
mixed-mode I-III crack growth, 166
numerical and analytical study results, 64–65
specimen, 62
stiffness, 66–67
Shadow moiré technique, 90
Shear forces, 100
Shear loss modulus, 289, 299–301
Shear modulus, 264
versus temperature, 278–279
Shear storage modulus, 289, 299–301
Shear strain, 37
extensometer for, 265–269
thick adherend lap joint, 113, 114
Shear strength, 252
ultimate
bolts, 250
bondline, 249
versus temperature, 278–280
Shear stress, 289
displacements as function of, 112, 115
versus distance to free edge, 143
distribution
along interface, 139–142
along tube-and-socket joint overlap, 258, 261
bonded joint, 277–278
versus reduced distance to edge, 140
skin-doubler specimen, 268, 270
integral equations, 212–213
thick adherend lap joint, 111
Shear stress-strain curve, 215, 264
aircraft primary structure, 273–274
data, thick-adherend and skin-doubler specimens, 269–272
FM 300K adhesive quality control, 273–275
Krieger extensometer test method, 267–268
properties, aircraft primary structure, 273–274
room temperature, 269–271
tube-and-socket joint, 255
Shear test, 39
Skin-doubler concept, as model joint, 264–265
Skin-doubler specimen, 264
adhesive strain, nonlinear range, 269
stress analysis, 264–265
verification, 268, 270
stress-strain data, 269–272
Slip coefficient, 234
Slip resistance, 229
Specimen
constant stress intensity factor, 98–104
designs, 69
see also specific types of specimens
Splices, 229
beam, 230–231
four-bolt, 245–246
load-elongation curves, 244–245, 247
six-bolt, 243–245
slip data, 244
tension flange contact surface, 247
two-bolt, 246–247
bonded, 241
nonbonded, 241
push-out specimens, load-elongation curve, 241–243
tensile
bonded one-bolt, 239–241
bonded two-bolt, 236–239
load-elongation curves, 234, 240
nonbonded one-bolt, 239–240
nonbonded two-bolt, 235–236
slip data, 236–237
Static strength, 229–250
beam splices
comparison with previous work, 248
comparison with tensile specimens, 248
experimental design, 242
four-bolt, 245–246
load-elongation curves, 244–245, 247
six-bolt, 243–245
slip data, 244
two-bolt, 246–247
bolts-to-member strength ratio, 231-232
design recommendations, 249-250
fabrication, 233
material properties, 232-233
slip coefficient, 234
specimens, 230-231
tensile specimens
 bonded one-bolt splices, 239-241
 bonded two-bolt splices, 236-239
 comparison with previous work, 241
 experiment design, 235
 load-elongation curves, 234, 240
 nonbonded one-bolt splices, 239-240
 nonbonded two-bolt splices, 235-236
 slip criteria, 238
 slip data, 236-237
 slip interaction diagram, 240
 testing procedure, 233-234
 Static stress durability, 289, 291
 bond endurance, 295-296
 joint performance, 290
 specimen configuration, 292, 295
Steel, 229
 adherends, fracture toughness, 81
 surface treatment, 186
Stiff adherend specimen, 29-30
 compliance change rate, 36
 deformed shape, 32-33
 stress distribution in adhesive layer, 34
Stiffness, 264
 change in, constant stress intensity factor, 100
 flexural, 126-128
 as function of crack length, 102-103
 transverse, 128-130
 Strain, 107
 adhesive, thick adherend lap joint, 116-117
 longitudinal, thick adherend lap joint, 115, 117
 nonlinear range, skin-doubler specimen, 269
Strain-energy-release rate, 29-30, 32, 35, 194
 versus applied load, 202
 blister specimen, 87
 Chisholm-Jones shear specimen, 30
 critical, 29, 164
 double cantilever beam specimens, 185
 fracture initiation and propagation, 192
 mode II effects, 165
 versus debond length, 202
 delamination growth, 121-122
 linear and elastic materials, 30
 mixed-mode loading, 163
 mode I, at fracture, 165
 strip blister specimen, 87, 89
 Strain gages, 39
 distance from free end of joint, 148
 distances between, 49
electrical, 145
orthogonal layout, 43
Stress, 5
 distribution, 119, 145-159
 ahead of crack tip, 123-124
 ahead of delamination, 122-123
 asymptotic expansions method, 150
 comparison between measurements and theoretical results, 158-159
 conformal mapping, very thin joints, 155-157
 far from lap ends, 151-152
 functions, 149
 holomorphic function, 156
 Hooke's law, 150
 interface, DCB specimens, 125
 matched asymptotic expansion method for moderately thin joints, 152-155
 material properties, 146-147
 principle of mechanical measurements, 148-149
 specimen-loading conditions, 147-148
 stress-traction, 154
 normal, distribution, 277-278
 along interface, 139, 141-143
 Stress analysis, 252-253, 304-305
 aircraft primary structure, 264
 skin-doubler specimen, 264-265
 verification, skin-doubler specimen, 268, 270
 Stress-concentration factors, 157
 Stress durability, 290-292
 Stress-energy-release rate, 276, 283
 versus crack length, 281-282
 Mode I and II components, 281-282
 Stress intensity factor, 21
 constant
 applied moment, 100
 change of specimen stiffness, 100
 displacement in loading point, 100-101
 final shape and dimensions of specimen, 101-102
 forces acting on specimen, 99
 shears, 100
 specimen development, 99-104
 determination, 213
 double cantilever beam, 121-122
 as function of crack length and debond height, 216-217
 debond aspect ratio, 216-217
 debond width and height, 215-216
 integral equations for shear stresses, 212-213
 predicted, 220-224
 problem formulation, 211-212
 relation to potential energy, 99
stringer debond size and shape effect, 215-217

stringer panel, 210-211
Stress-strain curve, 227, 252
EA9321 adhesive system, 37
Stress-tensor, first invariant, 156
Stringer panel, 209-210
debond size and shape effect on stress-intensity factor, 215-217
model, 210-211
predicted debonding, 217-223
linear adhesive, 217-219
nonlinear adhesive, 219
stress-intensity factor, 210, 211, 220-222
stress-intensity factor, 210-211
superposition model, 225
Strip blister specimen
clamped, 89
closed-form and finite solutions with experimental deflections, 90-91
digital analysis system for shadow moire, 90
rubber-to-metal bonds, 87-90
strain energy release rate, 87, 89
Superposition model, 225

T
Tangent modulus, 45, 48-50
Tensile failure load, versus overlap length, 258-259
Thermal analysis, environmental durability, 298-301
Thermal spectroscopy, 292, 294
Thick adherend lap joint, 107-118, 264
displacement field
fringe patterns, 111-114
preliminary test, 108, 110
displacements
as function of shear stress, 112, 115
variation across adhesive thickness, 115-116
interpretation and results, 112-117
Lagrangian strain-displacement relationships, 113-114
preliminary tests, 108-109
shear stress, displacement and strain history, 111
specimen, 108
strain along adhesive/adherend interfaces, 115-117
test sequence and fringe patterns, 109, 111-112
Thick adherend lap shear joint, 28-29, 67
elastic parameters
analytical study, 58-59
experimental results, 59-60
numerical study, 59

finite element meshes, 57
specimen, 56, 266
deformed shape, 32-33
mechanical drawing, 277
stress distribution in adhesive layer, 34
stress-strain data, 269-272
test data, 271

Thick adherend test, 54
Tube-and-socket joint, 252-262
adhesive application and fixturing, 255-256
adhesive shear behavior determination, 254
analytical/experimental work, 258-261
finite element analysis, 257-258
graph, 256
Krieger extensometer test method, 254
mechanical properties, 257-258
radial stress distributions along tube-and-socket joint overlap, 258-260
shear stress distributions along joint overlap, 258, 261
shear stress-strain curve, 255
specimen preparation, 254-255
tensile failure load versus overlap length, 258-259
tension test method, 255
test matrix, 253

U
Uniform pure shear testing specimen, 28-38
Chisholm-Jones shear specimen, 30, 32, 35-36
compliance change rate, 36
evaluation, 29-30, 32, 35
procedure and results, 35, 37
stiff adherend specimen, 29-30
thick adherend lap shear joint, 28-29

V
VISTA, 85, 87

W
WKB method, 51
Woven Kevlar composites, 194-205
adhesive properties, 197
bridging fibers, 198-199
composite properties, 196
debond
growth rates, 202-205
mechanism, 197-199
debonded surfaces, 200-201
finite element analysis, 199–202
specimen preparation and configuration, 195–196
static fracture strength, 205
testing procedure, 196–197

Y
Yield zone, double cantilever beam, 130–131
Young's modulus
double-lap joint, 152
ratio, stress distribution and, 140–141