Subject Index

A

AASHTO Guide for Design of Pavement Structures, 74
AASHTO Interim Guide for Design of Pavement Structures, 21, 30–31
AASHTO standards
 M283, 122
 T48, 107
 T49, 107
 T51, 107
 T53, 107
 T96, 7, 10
 T104, 6
 T112, 7
 T165, 124
 T176, 7
 T179, 107
 T180, 66–67, 69
 T201, 107
 T209, 124
 T210, 107
 T215-70, 70
 T228, 107
AC (see Asphalt concrete)
Additives
 antistrip, for moisture damage reduction, 101
 various, tensile strength ratio and, 101
Adhesion failure, 96–97
Admixtures, low-quality aggregates, 6
Age effects
 AC mixtures, 49
 moisture damage, 97
Aggregates
 fine sand, in asphalt mixtures, 44
 low-quality (see Low-quality aggregates) properties, critical bitumen content and, 50–61
 quality, 5
 Saudi Arabia
 location, 7–9
 physical and mechanical properties, 9–10
 quality specification, 6–7
 size effects on asphalt concrete, 45–47
 source effects
 ELSYM5 analysis, 139–142
 fatigue, 128–130, 137
 mix design, 126–128, 132–134
 permanent deformation, 130–132, 137–139
 resilient modulus, 128–130, 134–136
 split tension, 132, 139
 type effects
 AC mixtures, 49
 moisture damage, 97
 permanent deformation, 165–170
Air voids
 effect on
 tensile strength, 91
 tensile strength ratio, 92
 versus tensile strength
 Lottman procedure, 80
 modified Lottman procedure, 81
 moisture sensitivity study, 83–88, 91
American Association of State Highway and Transportation Officials (see AASHTO standards)
Antistrip
 additives, for moisture damage reduction, 101
 rating, with boiling-soak test, 92–93
Asphalt concrete
 characterization, predictive equations, 159–162
 critical bitumen content, 50–61
 permanent deformation data, 160
 predicted and measured permanent strain versus loading cycles, 158
Asphalt content, effect on permanent deformation parameters, 159–164
Asphaltic mixtures
 characterization, 11
 critical bitumen content, 50–61
 effect of
 aging and aggregate type, 49
 filler amount, 39
Asphaltic mixtures, effect of (cont)
filler type, 35–39
maximum aggregate size, 45–47
percent fracture and gradation, 120, 126–134
evaluation
with gyratory testing machine, 47–48
with repeated load diametral test device, 124–127
fine sand aggregates in, 44
mix design, effect on moisture damage, 97–98
modulus of resistance, 13–14
Asphaltic pavements, moisture damage, 97–98
evaluation, 98–99
reduction, 98–99
ASTM standards
C 127-84, 13
D 5, 107
D 36, 107
D 76, 107
D 92, 107
D 113, 107
D 448-80, 20
D 1075, 98
D 1557-78, 20, 23
D 1664, 145
D 1754, 107
D 1856-79, 23
D 2170, 107
D 2172-79, 23
D 3625, 98

B
Base course
granular, predictive equations for characterization, 162–163
predicted and measured permanent strain versus loading cycles, 157
Benkelman beam tests, thin-surfaced crushed-stone base pavement, 25–27
Bitumen content, critical, 50–61
Blending, low-quality aggregates, 5
Boiling water test
moisture damage, 98
moisture susceptibility, 93

C
Cement-coating method, low-quality aggregates, 6, 11–13

Coating processes, low-quality aggregates, 6
Cohesion failure, 97
Compaction
critical bitumen content and, 50–61
filler effects, 36, 43–44
kneading, by gyratory testing machine, 60–61
Comprehensive stress, coated/uncoated LQA asphaltic mixtures, 12
Construction procedures, to reduce moisture damage, 101
Creep effects, on elastic modulus values for thin-surfaced crushed-stone base pavements, 32
Critical bitumen content, asphalt concrete, 50–61
Critical void content, asphalt concrete, 50–61
Crushed-stone base pavements, thin-surfaced, 19–20
backcalculated moduli from FWD deflection basic data, 27–28
base characteristics, 23, 69
base course layer coefficients, 30–31
Benkelman beam tests, 25–27
bituminous surface treatment, 23
construction, 20, 66–67
elastic modulus back-analysis, 27
elastic modulus, 31–32
equivalent axle loads, 31, 73–74
falling weight deflectometer tests, 27–28
permeability, 70
rut depths, 21–22
rutting history, 70–73
static plate load tests, 23–25
strength variations, 32
subgrade characteristics, 22–23, 67–69
surface strain tests, 25–27
surface treatment, 69–70
traffic loadings, 21

D
Data analysis, moisture susceptibility tests, 88–94
Debonding
classification of seal coats, 150–153
seal coat debonding test, 145–149
Deleterious aggregates, definition, 5
Density effects
on asphalt concrete permanent deformation, 159–162
on granular base material permanent deformation, 162–163
on permanent deformation parameters, 159
on subgrade soil permanent deformation, 163–164

E
Elastic Layered System computer program (see ELSYM5)
Elastic modulus (see Modulus of elasticity)
ELSYM5, fracture and fines content effects on pavement performance, 139–142
Emulsion-based seal coats
seal coat debonding test, 145–149
vulnerability to moisture damage, classification, 150–153
Equivalent axle loads, thin-surfaced crushed-stone base pavements, 31, 73–74

F
Falling weight deflectometer
backcalculated moduli from deflection basin data, 28–32
tests for structural strength, 27–28
Fatigue, percent fracture and gradation effects, 128–130, 137
Field compaction, filler effects, 43–44
Field construction procedures, moisture damage reduction, 101
Field evaluations
bituminous mixes at hot-mix asphalt plants, 48–50
thin-surfaced crushed-stone base pavement
Benkelman beam deflections, 25–27
falling weight deflectometer tests, 27–29
static plate load tests, 23–25
surface strain measurements, 25–27
Field screening tests, for moisture damage, 100–101
Fillers
amount, effect on asphalt concrete quality, 39
content
versus indirect tensile strength, 38
versus mix density, 37
versus mix voids in mineral aggregate, 37
versus stability, fig, 38
effect on asphalt concrete, 35–39
field compaction, 43–44
Fines content effects, on AC mixture performance
ELSYM5 analysis, 139–142
fatigue, 128–130, 137
mix design, 126–128, 132–134
permanent deformation, 130–132, 137–139
resilient modulus, 128–130, 134–136
split tension, 132, 139
Flexible pavements, permanent deformation characterization, 155–157
effects of aggregate characteristics, 164–170
prediction, 157–164
Fracture level effects, on AC mixture performance
ELSYM5 analysis, 139–142
fatigue, 128–130, 137
mix design, 126–128, 132–134
permanent deformation, 130–132, 137–139
resilient modulus, 128–130, 134–136
split tension, 132, 139
Freeze-thaw pedestal test, 99
Freezing effects, on tensile strength ratio, 93–94
FWD (see Falling weight deflectometer)

G
Gradation effects, on AC mixture performance, 50–61
ELSYM5 analysis, 139–142
fatigue, 128–130, 137
mix design, 126–128, 132–134
permanent deformation, 130–132, 137–139
resilient modulus, 128–130, 134–136
split tension, 132, 139
Granular base material, predictive equations for characterization, 162–163
Gyratory elasto-plastic index, 48
Gyratory testing machine
evaluation of bituminous mixes at hot-mix asphalt plants, 48–50
kneading compaction, 60–61
procedure for evaluating AC mixtures, 47–48

H
Hot-mix asphalt
antistrip rating with boiling-soak test, 92–93
IMPLICATION OF AGGREGATES

Hot-mix asphalt (cont)
curve fitting and averaging of tensile strength data, 90
effect of
air voids on tensile strength, 91–92
freezing cycle on tensile strength ratios, 93–94
Lottman and modified Lottman procedures, 88–94
sample preparation, 81–82
tensile strength versus air voids, 83–88, 91
regression models, 89
two-tier specification, 94
versus saturation, 93–94
tensile strength ratios, freezing-cycle effects, 93
Low-quality aggregates
beneficiation methods, 5–6
caracterization, 11
coating method, 11–13
physical and mechanical properties, 9–10
test results on, 13–17
LQA (see Low-quality aggregates)

I

ILLI-PAVE program
aggregate type effects on permanent deformation, 164–170
elastic moduli of thin-surfaced crushed-stone base pavements, 32
Immersion-compression test, 98
modified, 98–99
Impregnation, low-quality aggregates, 5
Impulse stiffness modulus, thin-surfaced crushed-stone base pavements, 28–29
Index of retained strength, coated/uncoated LQA asphaltic mixtures, 12
Indirect tensile strength, coated/uncoated LQA asphaltic mixtures, 12

L

Loading cycles, permanent strain and, 155–157
Lottman procedure (hot-mix asphalt), 99
antistrip rating with boiling-soak test, 92–93
data analysis, 88–94
multiple freeze-thaw cycles, 99
sample preparation, 81–82
tensile strength versus air voids, 83–88, 91
data, curve fitting and averaging, 90
effect of air voids, 91–92
regression models, 89
two-tier specification, 94
versus saturation, 93–94

M

Marshall design criteria, for low-, medium-, and high-quality aggregates, 11, 13
Marshall stability test
crushed limestone mixtures, 112
property curves for SEA mixtures, 113–115
Maximum aggregate size, effect on asphalt concrete, 45–47
Mechanical processing, low-quality aggregates, 5
Mix design
effect on moisture damage, 97–98
Marshall and Hveem methods, 109–112
percent fracture and gradation effects on AC performance, 126–128, 132–134
resistance to moisture damage, 99–100
sulfur-extended asphalt, 109, 112–116
Modified Lottman procedure (hot-mix asphalt), 88–94
antistrip rating with boiling-soak test, 92–93
sample preparation, 81–82
tensile strength data, curve fitting and averaging, 90
effect of air voids, 91–92
regression models, 89
two-tier specification, 94
versus air voids, 83–88, 91
versus saturation, 93
tensile strength ratios, freezing-cycle effects, 93–94
Modulus of elasticity
back-analysis from Benkelman beam tests, 27
backcalculated from falling weight deformation basin data, 28–31
base and subgrade moduli, 26
ILLI-PAVE method, 32
thin-surfaced crushed-stone base pavements, 31–32
Modulus of resilience
coated/uncoated LQA asphaltic mixtures, 12
moisture damage, 99
percent fracture and gradation effects, 128–130, 134–136
temperature effects, 13–15
thin-surfaced crushed-stone base pavement subgrade, 22–23
Moisture content effects
asphalt concrete permanent deformation, 159–162
granular base material permanent deformation, 162–163
permanent deformation parameters, 159
subgrade soil permanent deformation, 163–164
Moisture damage
adhesion failure, 96–97
cohesion failure, 97
definition, 96–97
evaluation methods, 98–99
factors affecting, 97–98
prediction, 100
reduction methods, 99–101
seal coat debonding test, 145–149
vulnerability to, seal coat classification, 150–153
Moisture susceptibility tests
Lottman procedure (see Lottman procedure)
modified Lottman procedure (see Modified Lottman procedure)
O
Overasphaltng, rutting caused by, 112
P
Pavement condition ratings, Dhahran-Abqaiq Road, 15–16
Pavements
asphaltic, moisture damage, 97–98
evaluation, 98–99
reduction methods, 99–101
flexible, permanent deformation characterization, 155–157
effects of aggregate characteristics, 164–170
prediction, 157–164
thin asphalt surfaces over aggregate base course, 64–66
aggregate base course characteristics, 69
construction, 66–67
equivalent axle loads, 73–74
permeability, 70
rutting history, 70–73
subgrade characteristics, 67–69
surface characteristics, 69–70
thin-surfaced crushed-stone base base characteristics, 23
base course layer coefficients, 30–31
Benkelman beam test, 25–27
bituminous surface treatment, 23
construction, 20
creep effects, 32
elastic modulus, 31–32
equivalent axle loads, 31
falling weight deflectometer tests, 27–30
static plate load tests, 23–25
strength variation, 32
subgrade characteristics, 22–23
surface strain measurements, 25–27
traffic loadings, 21
Permanent deformation (see also Rutting)
characterization, 155–157
effects of
aggregate characteristics, 165–170
percent fracture and gradation, 130–132, 137–139
loading cycles and, 155–157
prediction, 157–159
predictive equations, 159
asphalt concrete, 159–162
granular base material, 162–163
subgrade soil, 163–164
Permanent strain
loading cycles, 155
predicted and measured versus loading cycles
for asphalt concrete, 158
for base course materials, 157
for subgrade soil, 156
Plate load tests, thin-surfaced crushed-stone base pavements, 23–25
Prediction
moisture damage, 100
permanent deformation, 157–159
equations for material constants, 159–164
Quality control, rutting caused by poor, 104

Regression analysis, equations for permanent deformation prediction, 159–164, 170
Regression models, tensile strength data, 89
Rehabilitation, rutted pavements in Saudi Arabia, 116–117
Resilient modulus (see Modulus of resili-ence)
Retained strength index, coated/uncoated LOA asphaltic mixtures, 12
Rutting (see also Permanent deformation)
Marshall and Hveem mix-design methods, 109
maximum aggregate size effects, 45
overasphaltling and, 112
poor field quality control and, 104
rehabilitation plans in Saudi Arabia, 116–117
roads of LOA asphaltic mixtures, 15–16
sulfur-extended asphalt mixtures, 109
Hveem test property curves, 115–116
Marshall test property curves, 113–115
thin-surfaced crushed-stone base pavement, 21–22
VESYS III program predictions, 15–17

Sample preparation, for moisture susceptibility tests, 81–82, 88–91
Saturation
tensile strength, 93
Screening tests, for moisture damage, 100–101
SEA (see Sulfur-extended-asphalt mixtures)
Seal Coat Debonding Test
apparatus, 145–146
classification of seal coats, 150–153
materials, 146–147
procedure, 147–149
Skid resistance, maximum aggregate size effects, 45
Slurry seals, moisture damage and, 98
Split tension, percent fracture and gradation effects, 132, 139
Strength
filler content, 38
maximum aggregate size effects, 45
in situ evaluation
Benkelman beam tests, 25–27
elastic moduli analyses, 27–30
static plate load tests, 23–25
surface strain measurements, 25–27
variations, 32
Stress effects
asphalt concrete permanent deformation, 159–162
granular base material permanent deformation, 162–163
on permanent deformation parameters, 159
subgrade soil permanent deformation, 163–164
Stripping
classification of seal coats, 150–153
potential, coated/uncoated LOA asphaltic mixtures, 12
seal coat debonding test, 149–151
Subgrade soils
characterization, predictive equations, 163–164
predicted and measured permanent strain versus loading cycles, 156
thin-surfaced crushed-stone base pavement, 22–23
Sulfur-extended-asphalt mixtures, 109–116
Hveem test property curves
cured for 2 days, 115
cured for 14 days, 116
Marshall test property curves
cured for 2 days, 113
cured for 14 days, 114
penetration values against time for binder, 112
Surface strain, thin-surfaced crushed-stone base pavement, 25–27
Surface treatments
bituminous, thin-surfaced crushed-stone base pavement, 23
effect on moisture damage, 98
Temperature effects
asphalt concrete permanent deformation, 159–162
granular base material permanent deformation, 162–163
modulus of resilience, 13–15
on permanent deformation parameters, 159
subgrade soil permanent deformation, 163–164

Tensile strength
air voids
 Lottman procedure, 80
 modified Lottman procedure, 81
 moisture sensitivity study, 83–88, 91
 antistrip rating with boil-soak test, 92–93
data
 curve fitting and averaging, 90
 regression models, 89
effect of air voids, 91
filler content, 38
indirect, coated/uncoated LQA asphaltic mixtures, 12
minimum, specification, 94
percent saturation, 93
Tensile strength ratio, 79
effect of
 air voids, 92
 freezing, 93–94
 various additives, 101
minimum, specification, 94
Traffic volume effects
moisture damage, 97
rutting, 103–104
Tunncliff–Root procedure (see Modified Lottman procedure)

VESYS III program, rutting prediction, 15–17