Subject Index

A
ADDs. See Airborne Dispersant Delivery System
Aerial applications, 170
Air blowers, 179, 184
Air cushion vehicles, 179, 181, 182(figs)
Airborne Dispersant Delivery System (ADDS), 62, 63, 187
Aircraft—spray planes
dispersant application, 67, 84–85
spill control systems, 65(fig)
Air/water interface
water turbulence and sand/gravel matrix, 18
Alaska
oil dispersant guidelines, 144
Alaska Clean Seas
spill response organization, 101
Alaska Regional Response Team, 144
American Petroleum Institute (API)
dispersant use in oil spill response, 104
site-specific planning project
American Society for Testing and Materials. See ASTM
AMOCO CADIZ tanker stranding, 64
Animals, effect of dispersants, 36
ANOVA. See Analysis of variance
Analysis of variance (ANOVA), 235, 242, 246, 247–248(figs)
Anthozoan, 234
API. See American Petroleum Institute
Arctic nearshore subtidal research, 54
ASTM
Committee F-20: Guides for ecological considerations for the use of chemical dispersants in oil spill response [in marine environments], 25, 63, 106, guidelines summary, 107(table)
Specifications
D-396, 120
D-974, 120
Standards
F-929: Marine mammals, 25, 63, 106, 122(table)
F-930: Rocky shores, 25, 63, 106, 122(table)
F-931: Seagrasses, 25, 63, 106, 122(table)
F-932: Coral reefs, 25, 63, 106, 122(table)
F-971: Mangroves, 25, 63, 106, 122(table)
F-972: Nearshore subtidal, 25, 63, 106, 122(table)
F-973: Tidal flats, 25, 63, 106, 122(table)
F-990: Sandy beaches, 25, 63, 106, 122(table)
F-999: Gravel or cobble beaches, 25, 63, 106, 122(table)
F-1008: Salt marshes, 25, 63, 106, 122(table)
F-1009: Offshore, 25, 63, 106, 122(table)
F-1010: Bird habitats, 25, 63, 106, 122(table)
F-1012: Arctic, 25, 63, 106, 122(table)
STP 659, 181(table)
Athabasca region, north-central Alberta map showing trial fen lakes, 38(fig)
B
Baffin Island Oil Spill project (BIOS), 54
Bioassay
use of chemical dispersants for oil spill control, 49
Biodegradation processes
effect of dispersants, 36
land spills, 73
Biological effects of untreated and AMOCO CADIZ tanker stranding, 64 chemically dispersed crude oil, 54–56
Biological studies
intertidal systems, 233
BIOS. See Baffin Island Oil Spill
Biota sampling, 232
Boats
 oil spill control systems, 65(table)

C

CADA. See Computer-Assisted Dispersant Application
CADA logic diagram, 100(fig)
 item by item description, 102–103
CADA software, 101(table)
Calibration, 220, 224(fig), 225, 227(table)
Canadian offshore aerial applications task force (COAATF), 170
CDT. See Computerized decision tree
Chemical countermeasures
 computerized decision tree—spill response tool, 84–85
Chemical dispersants. See also ASTM Committee F-20, Dispersants alternatives
 film forming chemical agents, 22
 oil gelling agents, 22
 surface collecting agents, 22
 appear to protect organisms, 60
 biological effects, 22, 49–60
Corexit 9550, 20–21
inclusion into oil effects oil behavior in experimental studies, 21
first-step effort towards estimating effects in natural systems, 22
in shallow nearshore waters, 49
natural dispersion, 194
OFC D-609, 20–21
oil spill containment, 95
premixing with oil, 18
prespill additions, 20–21
protect biologically sensitive shoreline habitats, 60
response training for oil spills, 91
versus shoreline cleanup—costs, 46–47(tables)
Chemical dispersion of oil spills, 67–68
Chemical sampling and analysis, 232, 236–237(tables)
Chemical treatment of spilled oil, 179, 191–192
Classification system
 Alaska, oil dispersant guidelines, 144
Clean Water Act, 74

Cleanups, oil spill. See also ASTM Committee F-20
AMOCO CADIZ tanker stranding, 64
marine environments, 104
on land response—options dispersants, 74–75, 122, 123, 126–129(figs)
scratch and replace, 74
sorbent materials, 74
straw, 74
tilling, 74
strategies, 22

COAATF. See Canadian offshore aerial applications task force
Communications technology
 computer data system, 99
 for oil spill response, 138

Computer-Assisted Dispersant Application (CADA)
distribution diskette, 101(table)
 logic diagram, 100(fig), 102–103
 oil spill response planning system, 100(fig)
 training, 88

Computers, 96

Contingency planning
 for dispersant use, 135, 139, 152
 oil spill response, 84–85, 86(fig)

Corals
 biological effects of untreated and chemically dispersed crude oil, 55, 56
 dispersed oil and oil effects, 264(table)
growth assessment, 234, 249
tropical nearshore ecosystems, 261
tropical oil pollution in coastal systems, 229, 233

Corexit
 9527, laboratory studies, 213(table), 270
 9550, prespill addition at experimental sites, 20–21

Coriolis effect, 98

Critical habitats
 tropical pollution in coastal systems, 257

Crude oil
 behavioral studies, 50, 53
 bioassays, 50
 chemical dispersants, 49
 economic evaluation of dispersants, 41
effects of chemical dispersants, 4
evaporation, 53(fig)
tropical nearshore ecosystems, 229
Crude oil spills
accidental, 51–52

D

DCCA. See Virgin Islands Department of Conservation and Cultural Affairs
Decision making
communication, 99
computer-assisted response program, 100(fig)
computerized decision tree, 84–85
diagrams, 123, 124–125(table), 126–129(figs)
dispersant use considerations, 135–136, 137(fig)
for dispersant use, 105, 123
oil spill cleanup, 66(fig), 67
spill response, 85
training, 93–96(figs)

Decision tree
computerized spill response, 84–85
contingency planning, 114
dispersant use
decision tables, 122, 126–129(figs)
sources of information, 123, 124–125(tables)
oil spill countermeasures, 93
training, 93

Defoliation
mangroves, 56

Dispersant applications program
checklist for dispersant observations, 132–133
methods and equipment planning, 133
new methods, 179, 181, 187, 190–191(figs)
spray system, 220, 226
system design, 221, 222–223(figs)
use considerations, 139, 255

Dispersant deposition rate, 166

Dispersant effectiveness
analytical methods, 157, 158–165(table), 167–168, 175(table), 176(fig)
laboratory studies, 207
laboratory test apparatus, 209(table), 210, 211(tables), 215(figs)
new approaches, 186
use guidelines, 29–30, 36

Dispersant field trials, 157–178

Dispersant research and testing,
180(tables), 208

Dispersant spray system, 220–228

Dispersant testing apparatus, 207

Dispersant treatment versus shoreline cleanup—costs, 46–47(tables)

Dispersant use. See also ASTM
Committee F-20
Alaska, 145
ASTM guidelines, 25, 122(table)
authorization, 135, 137(fig), 139
considerations, 135
contingency plans, 135
decision making procedures, 122–123, 124–125(tables)
delivery vehicles, 140
environmental impacts, 122
herding of oil, 157
laboratory tests, 207
letters of agreement, 152
monitoring and control, 120, 140
observations, 142
planning
property data and dispersibility factors, 114–120, 121(table), 134
resource management, 141
training, 141
use considerations, 143
training, 120
trajectory analysis, 120

Dispersant use zones
Alaska, 145–148
environmental information, 148, 149(fig)
guidelines, 150(fig)
planning method, 108–110, 111(fig)
preapproval areas, 147(fig)

Dispersants. See also Chemical dispersants
applications
land compared to marine, 75
methods, 75–76, 84–85
behavior in sewer system, 274
Corexit 9550, 20
decision making, 64–68, 75, 105
ectological considerations for use, 108
economic evaluation, 41
effects
of elastomers, 78
of new methods, 179
of spray system, 220
on animals, 36
on biodegradation processes, 36
on ecology, 104
Dispersants, effects—continued
 on plant life, 36
 on tropical nearshore ecosystems, 257–261
effectiveness, 5, 32–35(tables), 36, 64–68
effectiveness tests, 36, 93
effects on retention of oil by streambed, 5
efficiency, effect of elastomers, 78
environmental effects, 31, 73
field effectiveness test, 93
freshwater and inland environments, 25, 31
guidelines, fresh water and inland habitats (in preparation), 107
guidelines, marine environments, 25, 63, 106–107(table)
land use
 not regulated in United States, 74
marine dispersants
 for salt-water use only, 75
methods of application, 5
nearshore shallow waters, 61
OFC D-609, 20
offshore waters, 61
oil soluble—SPAN 80, 78
oil spills, 98
Petroleum Green, ADP-7
 water-based dispersant concentrate, 75
planning for use, 67, 73, 107(table), 108–110, 120
dispersant use zones, 108, 111(fig)
response options, 114
short-term impact of dispersed oil versus spilled oil strands on shorelines, 105
SPAN-80, 78
to combat oil spills, 41
Torrey Canyon spill, 104
toxicity, 32–35(tables), 36
toxicity tables, 268, 269(table)
tropical oil pollution, 229
turbidity measurements, 79
use plan, 120
use zones—planning methods, 108

Dispersants, research and development
dispersant effectiveness, 32–36, 64–68
FOSRP (Freshwater oil spill research program), 31–32
laboratory studies, 32–35
overview, 1
potential use, 32
toxicity studies, 32–35(tables), 36
water use concerns after use of oil spill chemicals, 32

Dispersed oil
effects on tropical nearshore ecosystems, 257
Dispersion, 194–206
Dissipation—natural of oil spills, 118
Dissolution
 crude oil spills, 52
Downdraft, helicopter, 184, 185(fig)
Droplet size, 195–196, 197(fig), 198–200, 201–202(figs)

Ecological considerations for dispersant use, 108
Ecological effects
 oil spills and cleanup, 106
Ecosystems
 stability, 257, 258(table)
 tropical, 259–260
Educator calibration, 227(table)
Effect of tropical oil pollution, 229
Effectiveness standards for dispersants overview, 2
Effectiveness testing apparatus, 207
Eggs, Pacific herring
 oil provides direct entry for toxic components, 60
Elastomizing agent for oil spill recovery training, 95
Elastomers
 effect on efficiency of dispersants, 78
Emergency response, 73, 84–85
Emulsifiers, 179
Environmental effects of dispersants, 31–37
Environmental impact
 chemically dispersed versus nondispersed oil, 5, 229
 field dispersant effectiveness test, 93
 inland oil spills, 31, 73–77
 oil spills
 countermeasure decision tree, 93
 response training, 93
 treatment with chemical dispersants, 33–35(tables), 36–37
Environmental management
 tropical ecosystems, 259–260
Environmental protection
 economic evaluation of dispersants, 41
 land spills, 76
 oil spill contingency planning, 84–85, 86(fig)
Equipment
 cleaning, 179
 for dispersant application, 119
 for turbidity measurement of
 inventories, 99
Evaporation and dissolution
 crude oil spills, 52
 effect in sewers, with and without
 dispersant application, 283
Experimental streambed construction
 Kasitsna Bay, Alaska, 5, 6–8(figs)
Explosions, 274

Freshwater spill test
 Prairie Region Oil Spill Containment
 and Recovery Activities Committee
 (PROSCARACL), Canadian
 Petroleum Association, 39
Freshwater species—toxicity of
 dispersants, 32–36
Freshwater streambed environments
 Arctic and subarctic regions, 4–5
Fuel vapor concentration in sewers
 effect of dispersants, 275, 281, 282(figs),
 283(fig)
Fuels, 274

Guidelines for oil spills
 planning for dispersant use, 115

Habitats—oil spill studies
 Arctic waters, Baffin Island, NWT,
 Canada, 50
 Panama, 50
 Searsport, ME, 50
Hazardous material. See also ASTM
 Committee F-20
 oil spill response, 25
 spill prevention, 179, 180(table)
 spills, 26–27(figs)
 toxicity of dispersants, 32–36
Hazardous waste
 oil spill debris, 42, 43(figs, table)
Health hazards
 mechanical cleanup of oil spills,
 67
Helicopter downdraft, 184, 185
Helicopters, 179, 187, 188–189(figs)
Herding of oil
 after dispersant application, 157, 168,
 192
Herdy balls, 168
Herring
 biological effects of chemical dispersants
 for control of oil spills, 49
 Pacific, larval abnormalities, 60
Homogenizers, (mixer-emulsifiers), 179,
 185, 186(fig)
Hovercraft
 new methods for dispersant application,
 181
 oil spill containment, training, 95(figs)
Hydrocarbon analysis, 10
Hydrocarbon measurement
sediment oil concentrations, 15
sediment samples, 15, 16–19(figs), 20(fig, table)
water samples, 14, 15(fig)

Hydrocarbon methodology and extraction
analysis, 10
sediment sampling, 10

Hydrocarbons—volatile/soluble
biological effects, 58, 59
equilibrium values, 52
evaporation, 53
exposures—measured, 57, 58(table)
measured in slick oils, 52, 53
tropical pollution in coastal systems, 238(table)
use of chemical dispersants to control oil spills, 49
Hydrofoils, 179, 190

I

Infrared analysis
oil in water, 166
Inland oil spills 25, 26–27(figs), 28–29(tables)
Interfacial surface tension
experimental oil spills, 12, 13(tables)
International Tanker Owners Pollution Federation, 131

Inventories
spill response equipment, 99
ITOPF. See International Tanker Owners Pollution Federation
Ixtoc I Well blowout, Gulf of Mexico, 84

J–K

Jet engine exhaust, 184
Kasitsna Bay, Alaska
construction of experimental streambed, 5, 6(fig). 7
Kinematic viscosity measurements, 13(table)

L

La Rosa oil slicks
untreated versus chemically dispersed, 53
Laboratory measurements, 194
Laboratory tests and apparatus dispersants, 207, 211–212(tables)
Land spills, 73

Lego Medio crude oil, 54
Letters of agreement (LOA)
Alaska, 153
Florida, 154
Puerto Rico, 155
U.S. Virgin Islands, 155

Literature reviews—oil spills, 28
LOA. See Letters of agreement
Load capacities of vessels, 187(table)
Logic diagram
Computer-Assisted Dispersant Application (CADA), 100(fig), 102–103
Low-toxicity chemical agents, 179

M

Macrobenthic organisms
biological effects of hydrocarbons, 58
markedly effected at dispersed oil BIOS research site, 54
Maine, Long Cove, Searsport
intertidal research, 55
Mangrove
biological effects of chemical dispersants, 49, 55–56
dispersed oil and oil effects, 265(table)
effects of crude oil, 229, 233, 239, 240(figs), 241
effects of dispersed oil, 258, 261
effects of untreated oil spills
killing of adult red mangrove trees, 57

Marine environments
guidelines for use of dispersants, ASTM Standards, 25, 63, 107–108
Mass balance, 169
Measurement
field, 157
laboratory, 194
Mechanical recovery systems, 226
Methods
dispersant use planning, 106–110, 111(fig)
Microwave thickness measurements, 167
Mixer-emulsifiers, 179

Models
computer-assisted planning, 98
oil spill response, 98
trajectory modeling, 98
Molecular weight, 78, 83
Mortality—seagrasses, 266–267(figs), 268
Murban oil slicks, 53
untreated versus chemical dispersed, 53
N

National Contingency plan, 113, 114–134
National oil and hazardous substances pollution contingency plan (NCP), 152
National strike force (NSF), U.S. Coast Guard
Atlantic area strike team, Mobile AL, and Pacific area strike team, San Francisco, CA, 138
Natural dispersion, 194–206
Nearshore, 229
Nonsaline environments
 guidelines for use of chemical dispersants in oil spills, 25
NSF. See National strike force
Nursery habitats, tropical, 258

O

OFC D-609
 prespill addition at experimental sites, 20
Offshore aerial applications task force, Canadian, (COAATF), 170
Offshore research oil spills, 53
Oil
 dispersion experiments, 201
 natural dispersion, 194
 properties, 213(table), 214(fig, table)
 uptake by marine life, 194
Oil behavior, 20
Oil concentrations
 at research sites, 57, 58(table)
 at sediment sampling sites, 16–20(figs)
 correlation
 and distance along windward axis of slick, 171, 172(fig)
 and relative distance perpendicular to wind, 171, 173(fig)
 and time after dispersion, 171(fig)
 mass balance calculation, 173, 174(fig)
 with depth, 170(fig)
Oil delivery system for tropical oil pollution investigations, 231
Oil dispersants. See also Chemical dispersants, Dispersants, Oil spills
 in simulated streambed channel, 4, 18
 on land, 73
Oil droplets, 194–201
Oil gelling agents, 22

Oil-in-water
 analytical techniques, 158
 over seagrasses, 237(fig)
Oil pollution investigations
 analytical methods, 232–233
Oil samples
 hydrocarbon analysis, 12
 rheological properties, 12, 13(table)
 surface tension measurements, oil/water; oil/air interface, 12, 13(table)
 viscosity measurements, 12
Oil slicks
 biological effects of untreated and chemically dispersed oil, 54–56
 field measurement, 168
 measurement on natural dispersion, 199(fig), 206
 thickness, 50, 51(table)
 volatile/soluble hydrocarbons
Oil spill control
 decision making, 66(fig)
Oil spill control systems
 skimmers, 64(table)
 spray boats, 65(table), 67
 spray planes, 65(table), 67
Oil spill cooperatives, 104
Oil spill counter measure decision tree, 93
Oil spill counter measure products
 application of chemical dispersant agents, 5
 overview, 2
Oil spill experimental studies
 direct observation, 13
Oil spill locations
 at experimental sampling sites, 6(fig), 7
Oil spill response. See Spill response
Oil spill scenarios, 61–64
Oil spillage
 percentage of oil evaporated for different crude oils, 53(fig)
Oil spills. See also ASTM Committee F-20
 Alaska, dispersant guidelines, 145
 biological effects of untreated oils versus chemically dispersed oil, 50
 chemical dispersant treatment costs, 42, 43(figs, table), 44, 45(fig), 46–47(tables), 119
 cleanup cooperatives, 104
 cleanup costs on shorelines, 41–42, 43(fig). 119–120
 computer-assisted planning for response, 96
 containment training session, 95(figs)
 cooperatives, 104
Oil spills—continued

data—U.S. Coast guard, 25-26
detection and measurement, 93
dispersant treatment versus shoreline cleanup—costs, 47(table)
dispersant use considerations, 135
economic evaluation of dispersants, 41
effect on fen lakes, 39
elastomers—effect on efficiency, 78-83
emergency response, 73, 84
environmental impact, 31
field dispersant effectiveness test, 93
field dispersant experience on land, 73
in freshwater streambeds and other inland environments, 18-22, 25, 26-27(figs), 28-29(tables), 31
letters of agreement for use of dispersants, 152-154
literature review, 28
management, 25, 42
measurement, 173, 175(fig)
molecular weight, 79
ocean studies
intertidal and subtidal, 50
planning for dispersant use, 104, 117
preparedness, 220
prevention, 179
response computerized, 84-85, 86(fig)
dispersant use planning, 104, 117
economic evaluation of dispersants, 41
inland environments, 25,
on land, 73
response training, 93
response vessels, 220
rheological properties of oil, 21
treatment, 157, 179
tropical pollution, 229
turbidity, 79
untreated slicks versus chemically dispersed, 49-50
use planning, 104
Oil thickness relevant to chemical dispersant, 119
Oscillating hoop test
operating procedures, 217
Oyster tissue analysis, 238
shallow tropical habitat research
biological effects of untreated and chemically dispersed Prudhoe Bay crude oil, 55
Pea floc, 168
PIAT. See Public information assist team
Public information assist team (PIAT), U.S. Coast Guard, 138
Permission for dispersant use, 114
Personnel training
computerized decision tree, 85, 88-89
Petroleum
economic evaluation of dispersants, 41
Petroleum Green ADP-7
water-based dispersant concentrate, 75
Planning
computerized spill response tool, 84
for dispersant use, 104-109, 110-111(figs), 114-134
options for oil spill response, 117
response, 112, 114
Plant life, effect of dispersants, 36
Polyisobutylene, 78
Prairie Region Oil Spill Containment and Recovery Activities Committee (PROSCARAC) of the Canadian Petroleum Association, 39

PROSCARAC. See Prairie Region Oil Spill Containment and Recovery Activities Committee
Prudhoe Bay crude oil spills
biological effects, 54
chemically dispersed and untreated slicks, 54
gas chromatograms, 11(fig)
offshore research, 53
sediment samples, 9, 10

Q–R

Quality assurance/quality control program for dispersant application, 130
Reef coverage assessment, 234, 242, 243-245(tables), 248-251(figs)
Regional response team concurrence, 135, 137(fig)
Response. See also Oil spills
crude oil spills, 41, 114
oil spills, 41, 114
oil spills on land, 73
planning, 112
P

Panama
Caribbean coast site selection and preparation for tropical oil pollution investigations, 230-231
INDEX

S

Salmon
biological effects of chemical dispersants and untreated oil, 57, 59
hydrocarbon uptake and loss, 60–61
dispersant prevented oil uptake, 61
Sampling biota, 229
Sand/gravel matrix and water turbulence at air/water interface, 18
Santa Barbara spill, 104
Sea Broom containment, 94
Sea urchins, 253
Seagrasses
biological effects of untreated and chemically dispersed crude oil, 55–56
dispersed oil and oil effects, 262–263(tables)
faunal assessment, 235
growth and density assessment
dispersed oil effects, 258
effects of crude oil, 235, 250–251, 252–253(tables)
studies, 234
time of exposure versus mortality, 266–267(figs)
Sediment analysis, 238(tables), 254
Sediment hydrocarbons, 10, 11(fig)
Sediment oil concentrations, 15
Sediment particle size distribution, 4
Sediment samples
particle size analysis, 12, 13(tables)
prespill and postspill, 10
tropical coastal systems, 232
weight percent distribution, 13(table)
Sediment sampling sites
experimental spills, 9
site selection, 6(fig), 7–8
spill scenario, 9
Sediments
exposure to oil, 21
hydrocarbon concentrations, 20(table)
particle size analysis, 12, 21

Sewers
behavior of fuels, 279, 280–281(figs)
test fluids, 278
Shoreline cleanup costs of oil spills, 42, 43(figs, table)
Site selections
descriptions, runs 1–6, 8–9
Skimmers, spill control, 64(table)
Software—CADA distribution diskette, 101(table)
SPAN 80
oil soluble dispersant, 78
Spill cleanup, 104
Spill control
available methods
aircraft spraying systems, 64, 67
dispersant application, 67
oil skimmer systems, 64(table)
spotter aircraft, 64
spray boats, 65(table), 67
spray planes, 65(table)
decision making, 66(fig), 67
technology—training, 93–96(figs)
Spill experiments
solutions, 9
Spill prevention, 92, 179
Spill reporting, 99
Spill response. See also Response
effective time for dispersant use, 116(tables)
equipment inventories, 99
planning, 68, 84–85, 91, 104, 117
Spray boats
precautions against hydrocarbons, 67
spill control, 65(table)
Stranding of oil from oil slicks, 56(table)
Submarines, 179
Subtidal systems
seagrass studies, 234
Subtropical critical habitats, 257–273
Surface collecting agents, 22
Surface oil slick, 4
Surface tension
oil spills in freshwater streambeds, 21
oil/water, 12, 13(tables)
Swirling flask apparatus
operating procedures, 217

T

Torrey Canyon spill
damage after dispersant misuse, 84, 104, 115
economic evaluation of dispersants, 41
overview, 1
Torrey Canyon spill—continued
effects of oil spills and dispersants on
plant and animal life, 33–35(tables), 36
of dispersant chemicals, 32–36(tables)
Toxicity testing
tropical ecosystems, 258–259
Training
dispersant use planning, 114–134
Virgin Islands Department of
Conservation and Cultural Affairs,
(DCCA), 92
spill response, 84, 91
Trajectory analysis
dispersant use planning, 120–121
treated and untreated oil, 135
Trajectory modeling
computer-assisted planning for oil spill
response, 98
Tropical environmental management,
259–260
Tropical oil pollution
coastal systems, 229–256
nearshore ecosystems, 257–273
Turbidimeters, 79, 158
Turbidmetric measurements, 166
Turbidity measurement
experimental work on effect of
elastomers on efficiency of oil spill
dispersants, 79, 80–82(figs)
Turbulence, 195

U

Ultraviolet ray imagery, 167
U.S. National Contingency Plan
allows use of dispersants for oil spill
mitigation, 130

V

Vapor concentrations in sewers, 284–
285(figs), 286–288(tables)
Vertical takeoff and landing aircraft
(VTOL), 184

Virgin Islands—black fuel oil spill,
91–92
Virgin Islands Department of
Conservation and Cultural Affairs
oil spill response training session, 92,
93(fig)
Viscoelastic agents for oil spill
containment, 95–96
Viscoelasticity, 179
Viscosity measurements
oil samples, 12, 13(fig), 203, 218(fig)
Visual inspection of oil behavior in
experimental spills, 13
VTOL. See Vertical takeoff and landing
aircraft
VTOL exhaust, 184

W

Warren Springs gear
oil spill containment equipment,
95(fig)
Water, 4
Water flow characteristics
flow rate, turbulence—can effect oil
retention of sediments, 21
Water sampling
data, 235, 236–237(tables)
hydrocarbon measurements, 14, 15(fig)
hydrocarbon methodology and
extraction, 11–12
Water turbulence and sand/gravel
interface
at air/water interface, 18
Waves, 195, 198, 199(fig)
Weather conditions
for chemical dispersion of spilled oil,
118

Y–Z

Yankee variable speed rotator
equipment for oil spill dispersant,
79
Zoanthus putchhellus. See Anthozoan