Subject Index

A

Alloys
aluminum
- corrosion fatigue crack growth, 246–249
- CTOD ductile instability, 414, 417
Incolloy 718
- threshold crack growth behavior, 628–637
- viscoplastic-induced closure, short cracks, 530–546
one-phase
- age-hardened and strain distribution, 186–188
- stress corrosion cracking, 209–231, 233–260
titanium
- diffusion-controlled crack growth, 246–249
- strain-induced hydrides, 569–579
two-phase
- age-hardened and strain distribution, 188–191
- characteristics of, 198–199
Aluminum
5456-H116 plates, 414–427
7075-T651, 246
6061-T651 plates, 414–427
weldments, 410–427
ASTM Committee E–24
fracture testing, 1
ASTM Standards
E 647, 515, 550
E 399–83, 608, 660, 662–663
E 813–81, 374, 435–436, 616

Brittle fracture
A–533B steel, 369–388
concrete, 447–457

C

C* integral, 103–109
- crack growth and, 105–106
- crack-tip blunting and, 115–119
Carbide particles, 190–191
Catastrophic failure
- prediction of
- slanted crack, metal plate, 506–512
Cathodic charging
effects in steel, 615–627
Cavitation (see also Nucleation)
- intergranular, 133–136
- in metals, 129–133
Cell model
- void nucleation, 61–82
Center-crack specimens
aluminum alloys, 414, 416
concrete, 447–457
HT 60 steel, 514–522
nickel-base superalloy, 630
rectangular metal plate, 497, 502–512
Ceramics
toughening of, 267–290
Charpy V-notch specimens
A 533B steel, 373–374
stainless steel, 460, 464
Clay soils
cracking of, 659–666
Cleavage
- nuclear power vessel steel, 375
Compact tension specimens
- 4340 steel, 607
- A 588A steel, 548–563
- austenitic stainless steels, 435–438
- HT 60 steel, 514–522
- micro-/macrodamage-free zone, 18, 21
- nickel-base superalloy, 630
Composite particles
and toughness in polymers, 143–146
Composites, ceramic
fiber/wasiker, 269, 280–289
steady-state cracking, 270
Concrete
dynamic brittle fracture analysis, 447–457
Configurational stability, 30
weight function
three-dimensional crack analysis, 54–56
Contamination
effect on hydrogen adsorption, 219–220
Continuum damage mechanics, 9
analytical model, 448–449
inclined crack, concrete, 447–457
Cooling (see Temperature, reduced)
Corrosion (see also Stress corrosion cracking)
 crack closure, 561–563
Crack arrest
 threshold, 631–637
 versus temperature, 93–95
Crack closure
 corrosion-induced, steel, 561–563
 high tensile strength steel, 514–529
 Mode II loading, chromium steel, 489–495
 oxide-induced, 154–156, 597–603
 plasticity-induced, 154–156
 roughness-induced, 154–156, 596–603
 subsurface cracks, Hertzian loaded, 679–686
Crack-defect interaction, 42–56
Crack growth (see also Creep crack growth; Fatigue crack growth)
 and C* interval, 105–106
 compacted fine-grained soils, 659, 661–666
 controlled environment and, 235–239
 corrosion and (see Stress corrosion cracking)
 diffusion-controlled, 246–249
 effect of crack-tip plasticity, 84–96
 microchemistry and, 222–229
 retardation of, 560–563
 stable environment and, 410–427
 surface energy density/volume and, 21–24
 thermal mechanical interaction and, 17–21
Crack initiation
 critique of formulas/analyses, 10–11
 micro-/macrodamage ahead of crack, 13, 15
 stress corrosion and, 210–214
 surface energy density/volume and, 12–17
 thermal mechanical interaction and, 17–24
Crack opening/closing
 subsurface cracks, Hertzian loaded, 679–686
Crack opening displacement (COD)
critique of, 10
Crack path, 195–197
Crack propagation (see Crack growth; Crack initiation)
Crack tapping
 weight function and, 53–54
Crack tip
 blunting of, 115–119, 165–169
 hydride formation in titanium alloys and, 578–579
 macrodamage free zone and, 21
 plasticity of, 84–96
 in relation to material microstructure, 12
 stress corrosion cracking and, 215
Crack tip opening displacement (CTOD)
 4340 steel, 589, 608–618
 aluminum weldments, 410–427
 aluminum wide-plate specimens, 410–427
 HT 60 steel, 518–519
 stress corrosion rate and, 223–228
Crack tunneling, 123–124
Crack wall
 microchemistry effects, 220–222
Cracks, types of center
 5456-H116 aluminum, 414, 416
 6061-T651 aluminum, 414, 416
 concrete, 447–457
 HT 60 steel, 514–522
 nickel-base superalloy, 630
 thin metal sheets, 497, 502–512
corner
 in plates, 297–315
disc
 creep crack growth, 123–124
 on disc, 358–360
 in finite-thickness plate, 503–512
 Incalloy 718, 718, 530–546
 on strip, 357
 elliptical, 668–686
 embedded
 in steel plate, 390, 394–409
 half-plane
 weight-function for, 33–34, 44–45, 50–53
inclined
 in concrete panel, 447–457
 in metal plate, 495, 503–512
planar, 351–364
short
closure of, 154–156
corrosion fatigue and, 252–254
definition of, 151, 158
propagation of, 170–175
review of, 152
in steel plate, 309–312
small (see Cracks, types of, short)
surface
 Hertzian contact, 668–686
 in steel plate, 317–326, 390–409
transverse
 in finite composite laminates, 641–658
Crazing
in homogeneous glassy polymer, 136–146
Creep crack growth
definition of, 101
effects of elasticity, 109–112
and intergranular cavitation, 130–133
review of, 101–124
CTOD (see Crack tip opening displacement)

D
Damage mechanics
creep crack growth
 review, 101–124
 unified approach to, 9–26
Deformation
cyclic loading, 152–154
effect on surface adsorption, 215–218
Delamination, 641–658
Dilatation
due to void nucleation, 66, 70
 versus distortion, 25
Dimpled rupture
austenitic steels, 434–445, 466, 471
Dislocation emission
 three-dimensional weight-function theory, 42–46
Ductile-brittle transition
ferritic steels, 369–371
Ductile fracture
review of, 129–133
Ductile instability
 aluminum wide-plate specimens, 419–422, 424–425
Ductile phases
 ceramic toughening, 277–280

E
Earth structures
fracture mechanics of, 659–666
Eigenvalues
 complex planar cracks, 354, 362–364
 crack at free surface, 318, 320–321
Elastic-plastic fracture (see also Plasticity; Viscoplasticity)
austenitic stainless steels, 459–474
flat steel plates with part-wall flaws, 390–409
parameters of, 156–157
pressure vessel steels, 369–388
review, 89–91
three-dimensional, 29–56
two-dimensional
 review of, 29
 weight-function theory/application, 29–56
Elasticity
creep crack growth, 109–112
Electrochemistry
 stress corrosion cracking, 244–249
Energy dissipation, 10–11
 ahead of crack, 15–17
Environmentally-assisted cracking
 helium, 581–603, 615–626
 hydrogen, 569–603
 hydrogen/hydrogenous gases, 240
 microstructure analysis, 200–203
 seawater, 605–613
 structural alloys, 233–260
 life prediction, 254–258

F
Fatigue crack growth
center-crack, high-strength steel, 514–529
constant amplitude load
 ASTM Standard E 647, 515, 550
corrosion and, 246–249
 crack opening, steel plate, 548–563
critique of formulas/analyses, 10–11
drive crack, thin metal plate, 497–512
 hydrogen/helium effects, 4340 steel, 581–603
 microstructure, age-hardened alloys, 186–191
near threshold
 chromium steel, 479, 481–495
 low-alloy steel, 581–603
 nickel-base superalloy, 628–637
 seawater effects, 4340 steel, 603–618
Fatigue crack growth (cont.)
slanted crack, thin metal plate, 497–512
small cracks, 151–180
ultrasonic, 481–495
universal ultrasound testing machine, 481
variable amplitude load, 548–563
viscoplastic-induced closure, Incoloy 718, 530–546
Ferrite, continuous (CF), 199
Fibers/whiskers
ceramic toughening, 269, 280–289
fiber failure, 285–286
Finite composite laminates, 641–658
Finite element-alternating method
surface/corner cracks in plates, 300–305, 309
computational time, 309
flow chart, 301
Finite element analysis
errors of, 25
inclined crack
concrete, 451
thin metal plate, 498–503
mixed-mode cracks, orthotropic material, 327–350
plasticity-induced crack closure, 519–522
single edge-cracked specimen, alloys, 530–546
surface/corner cracks in plates, 299, 304–305
viscoplastic-induced closure, short cracks, 530–546
Flaws, types of (see Cracks, types)
Flow law, 531
Flow strength
embedded flaws in steel plates, 399
Fractography
-crack closure, steel, 489
Fracture mechanics
analyses/critique, 9–29
future challenges, 2–3
history of, 1, 9–26
overview of applications, 1
Fracture toughness
4340 steel, 85–89
ASTM Standards
E 813–81, 374
A 533B steel, 374–383
high-strength steels, 615–627
nuclear industry requirements, steel, 371
Free-surface effects, 317–326
Frozen stress photoelasticity
finite-thickness plates, 317–326
Mode I LEFM algorithm for, 323–326
G
Geometric effects
transverse crack, laminates, 656–658
Grain boundaries
and crack propagation, 172
and creep crack growth, 101, 105
and fracture, 132–136
and hydrogen partitioning, 242–243
H
Hard particles
and fracture of metals, 129–133
Hardening models
effect of void nucleation, 68–72
strain distribution, age-hardened alloys, 186–199
Heating (see Temperature, elevated; Thermal aging)
Helium
-crack growth, 4340 steel, 581–603
Hertzian contact, 668–686
Heterogeneities in materials
effect on fracture, 127–146, 190–191, 434, 435
History
of fracture mechanics, 1, 9–26
Homogeneous ductile solids
failure of, 127–129
Humidity
-crack growth, 4340 steel, 581–603
Hydride formation
titanium alloys, 569–579
Hydrogen embrittlement
300 M steel, 615–627
4340 steel, 581–603, 615–627
6304 steel, 615–627
Hydrogen supply
partitioning of, 242–243
and surface adsorption, 219–220, 241–244
I
Inclusions (see also Carbide particles; Hard particles; Heterogeneities in materials; Oxide particles)
and rupture of steels, 434, 435
Influence function
- planar cracks, 351–364
- two- and three-dimensional cracks
- data base, 361

Intergranular cavitation, 133–136

Isotropic hardening model
- and void nucleation, 76–78

J
- J_2-flow theory
- void nucleation, 66–68
- J-integral
 - critique of, 10
 - hydrogen embrittled steel, 615, 621–627

K
- K_c
 - fracture toughness, A 533B steel, 375
- Kinematic hardening model
 - and void nucleation, 68–70

L
- Laminates, finite composite (see Finite composite laminates)
- Least squares solution
 - fracture toughness, 375
 - planar elastic crack problem, 355–356
- LEFM (see Linear elastic fracture mechanics)
- Lifetime predictions
 - cracked components, 106–109
 - structural alloys, 254–258
- Linear elastic fracture mechanics (LEFM)
 - crack at free surface, 317–326
 - crack tip plastic zone, 185
 - critique of, 10
 - soil cracks/fractures, 660, 664–666
- Load displacement
 - austenitic stainless steels, 467–469
- Load parameter map
 - for creep crack growth, 114–115
- Loading
 - bending
 - corner-cracked steel plates, 298
 - various steels, 396
 - biaxial, 162–165
 - orthotropic material, 327–350
 - combined mode
 - chromium steel, 479–480, 485–495
- constant amplitude
 - ASTM Standard E 647, 515–517
 - steel, 515–517
- cyclic
 - A 588A steel, 548–563
 - crack closure, 154–156
 - elastic-plastic parameters, 156–157
 - fatigue crack growth, 152–157, 185
 - Incalloy 718, 530–546
 - plastic deformation, 152–153
 - elastic-plastic, 165
- Hertzian contact, 668–686
- limit, 407–409
- mixed-mode
 - chromium steel, 479–480
 - orthotropic material, 327–350
 - plastics, fiber-reinforced, 162–165
 - steel, 162–165
 - Mode I
 - chromium steel, 479–495
 - steel, 497–512
 - Mode II
 - chromium steel, 479–480, 485–495
 - Mode III
 - steel, 495–512
 - thin metal sheets, 497–512
 - monotonically-increasing, 605–613
 - multiaxial (see Loading, mixed mode)
 - sustained
 - structural alloys, 241–243
 - tension
 - corner-cracked steel plates, 298
 - various steels, 395
 - variable amplitude
 - steel plate, 548, 553–563
- Localization of damage
 - inclined crack, concrete, 454
- Lubrication
 - and crack growth, 672–678

M
- Macroscopic stress-strain behavior
 - void nucleation and, 63
- Martensite, continuous (MF), 199–200
- hydrogen partitioning, 242–243
- transformation toughening, ceramics, 271–273
- Material constants
 - of transverse-cracked laminate, 658
- Material damage (see Damage mechanics)
- Material science
 - definition, 9
 - overview, 10–26
Matrix strain hardening
 void nucleation and, 76–78
Metals (see also Alloys; Aluminum; Steels)
 ductile fracture of, 129–133
Micro-/macrodamage free zone, 21
Micro-/macromechanics of fracture
 review of, 151–180, 186–203
 theory, 11–17, 21
Microchemistry
 stress corrosion cracking, 209–231, 249
 sustained load crack growth, 241–243
Microcracking
 ceramics, 274–276
Microstructure (see also Heterogeneities in materials; Inclusions; Oxide particles; Void nucleation)
 and fatigue crack propagation, 184–203
 and fracture of stainless steel, 434–445
 scanning electron microscopy, 437–440

N
National Symposium on Fracture Mechanics
 goals, 1–2
 overview, 1–3
NEWINF
 data base of influence functions, 361
Nickel-base alloy
 threshold crack behavior, 628–637
 viscoplastic-induced closure, short cracks, 530–546
Notched specimens, 175–179, 464
ASTM E 23–86, 175–179, 464
Nuclear power vessel steel
 ductile-brittle fracture, 369–388
 fracture toughness of, 369–388
Nucleation (see Cavitation; Pit nucleation; Void nucleation)

O
Oil lubrication
 and crack growth, 672–678
Orthotropic material
 stress-intensity factors, 327–350
Overloads/underloads
 fatigue crack growth, 548–563
Oxide particles
 and crack closure, 154–156
 and fatigue properties, 190–191
 near-threshold fatigue crack growth, 593–606, 636–637

P
Photoelastic material
 surface flaws in, 317–326
 Mode I LEFM algorithm for, 323–326
Pit nucleation
 lubricated rolling/sliding surface, 668
Pitting
 relationship to cracking, 210
Plastic collapse
 modified strip yield model, 412, 426–427
 part-wall flawed plates, 399–409
Plastic deformation
 residual in steel, 523–525
Plasticity (see also Elastic-plastic fracture)
 crack closure, 519–522
 crack-tip deformation, 84–96
 energy density theory and, 22–24
 plastic zone size and, 191–195
 void nucleation and, 79
Plates, metal
 center-cracked, 497, 502–512
 compact tension specimen, 548–563
 corner-cracked, 297–315
 edge-cracked, 497, 502–512
 inclined crack, 497, 503–512
 part-wall flaws in, 390–409
 short cracks, 309–312
 surface-cracked, 297–315, 317–326
Polymers
 block copolymers
 crazing in, 142–143
 toughened
 cavitation in, 136–146
 crazing in, 136–146
 fracture in, 138–146
Power-law viscous materials
 C* interval and, 104–105
Process zone
 ceramic toughening, 267–269

R
Reference curves (R-curves)
 4340 steel, 609–610
 aluminum wide-plate, 419–422
 ceramics, 266, 273
Reference stress
 CTOD model, 427–428
Retardation of crack growth (see Crack arrest; Crack closure; Crack growth, retardation of)
Rock
 damage modeling of, 447
Rolling/sliding contact fatigue, 668, 672–686

S

Seawater
and crack growth, 4340 steel, 605–613
Shear lips
creep crack growth, 123–124
fatigue growth, thin metallic sheets, 497–512
Similitude concept, 157–159
applications of, 251–254
Size effect
fracture toughness, A 533B steels, 369, 371
prediction of, 380–383
Slip character
and fatigue crack growth, 186–191
and plastic zone size, 191–195
Small-scale yielding model
crack closure, steels, 522–526
Softening effect
of pressure-bulk strain, 453
of void nucleation, 61–82
Soil fracture, 659–666
Space/time/temperature interaction
1020 steel specimen, 17–21
theoretical aspects, 26
Steady-state cracking
composite ceramics, 269–270
Steels
1020, 17–21
4340, 581–603, 605–613, 615–627
6304, 615–627
300 M, 615–627
304 SS, 459–474
308 SS, 459–474
316 SS, 459–474
A 588A, 548–563
austenitic, high-strength, 433–445, 459–474
A 533B, 369–388
chromium, 483–495
ferritic, 398–407
HT 60, 514–529
low alloy, 581–603
pressure vessel, 369–388
SM 41A, 514–529
weldments, 459–474
Strain distribution (see Slip character)
Stress corrosion cracking, 209–231
crack initiation, 210–214

crack propagation, 214–229, 236
historical review, 233–250
life prediction and, 254–258
microchemistry, 211–213
stages of, 236–237
Stress cycle
variable amplitude loads, 548, 553–563
Stress-intensity factors
central crack in finite plane, 500–512
compact/center-crack specimens, steel, 518
compact specimens, steel, 553–563
complex planar cracks, 351–364
crack formation, plates, 297–315, 317, 320–326
crack velocity, 224–228
fatigue crack propagation, 157–165
mixed-mode cracks, orthotropic material, 327–350
rolling/sliding contact fatigue, 668, 672–686
slanted crack in finite plane, 503–512
three-dimensional weight function, 42–56
threshold
low-alloy steel, 585–589, 601
structural alloys, 235
transverse crack in laminates, 640, 656–658
ultrasonically-stressed steel, 493–495
Stress ratio
fatigue crack growth, 517–519, 527–529
threshold crack growth, 628–637
variable amplitude loads, 553–554
Stress singularity
crack-tip in laminates, 640, 645–647
loss of, free surface flaws, 317–326
Stress-strain behavior
continuum damage, concrete, 449–454
effect of void nucleation, 61–82
Strip yield model, 412, 426–427
Surface adsorption
contamination and, 215–220
deformation and, 215–220
hydrogen supply and, 241–243
Surface and volume energy, 10–15
surface energy density, 11–13
volume energy density, 13–15
Surface flaws
oil seepage into, 676
photoelastic material, 317–326
plates, 390–409
review, 394–398
Surface flaws (cont.)
 rolling/sliding contact, 668–686
 subsurface cracks, 668–686
Surface roughness
 and crack closure, 154–156
 and near-threshold fatigue crack growth, 591–593, 596–603

T
Temperature, elevated (see also Thermal aging)
 effect on crack growth, titanium alloys, 569–570, 577–579
 effect on ductile-brittle transition, steel, 369–371
 effect on fracture toughness, steels, 369–388, 459–474
 effect on hydrogen partitioning, steels, 242–243
 effect on intergranular cavitation, 133–136
 effect on stress-corrosion cracking, alloys, 239
 effect on surface phase transformation, steels, 242–243
 effect on threshold crack growth, nickel-base superalloy, 628–630, 637
 effect on viscoplastic closure of short cracks, stainless steel, 530–546
 effect on yield strength, hydrogen-embrittled steel, 617–621
Temperature, reduced
 cryogenic effects on austenitic steels, 433
 effect on ductile fracture, metals and alloys, 127–146
 effect on hydrogen partitioning, steels, 242–243
Tensile strength
 soils, 662–666
Tension softening
 inclined crack in concrete panel, 453, 457
Tension specimens
 austenitic steels, 435–438
Thermal aging (see also Temperature, elevated)
 effect on fracture toughness, steel plates, 459–474
Three-dimensional analysis
 creep crack growth, 119–124
 Hertzian contact crack, 669–671
 steel plates, 393–394, 398–407
 weight function theory, 29–46

Three-point bend specimens
 A 533B steel, 372
 various steels, 396
Threshold/near-threshold conditions
 combined Mode I and Mode II loading, 481–495
 elevated temperature effects, 628–637
 hydrogen/helium effects, 581–603
 review, 169–170
 review, environmentally-assisted crack growth, 235–239
 seawater effects, 605–613
Titanium alloys
 diffusion-controlled crack growth, 246–249
 strain-induced hydrides in, 569–579
Transformation toughening
 ceramics, 270–273
Transmission electron microscopy (TEM) in situ study, Ti–6Al–4V alloy, 569–577
Triaxial stress
 and void nucleation, 63–70
Tribology problems
 fracture mechanics solutions, 668–696
 Turbine engine components, 628

U
Ultrasonic fatigue, 481–495
 universal-ultrasound testing machine, 481
Ultrasound
 crack opening measurements, 550–551, 553–554

V
Virtual crack extension, 327–350
Viscoplasticity
 closure of small cracks, 530–546
Viscous materials
 C* interval and, 104–105
Void nucleation
 in austenitic steels, 433–445
 effect on macroscopic stress-strain behavior, 63–65
 in elastic-plastic solid, 61–86
 in glassy polymers, 136–146
 and hard particles, 129–133
 in hydrogen-embrittled steel, 620–621, 627
 isotropic vs kinematic hardening, 68–70, 76–82
 mechanical model, 65–70
W
Weight-function theory
orthotropic material cracks, 327–350
review of, 30–31
three-dimensional elastic cracks, 31–56

Welds
aluminum, 410–427
austenitic steels, 465–467
Wide plate specimens
aluminum alloys, 416