Subject Index

A

Accident mechanisms. See also Causes of accidents
- skier's ability and equipment, 321-322
- traumatic accidents, 64-66

Active stress, anterior cruciate ligament mechanics, 113-114, 117

Acute arterial occlusion, ski boot-related, 132-134

Age levels
- alpine-cross-country skiing comparisons, 90-91
- collision injuries, 70-73
- injury rates, 35-36
- recreational skiers, 43-44
- skier behavior, 86
- snowboarding injuries, 77-78

Alpine Skiing Safety Council (Norway), 344-346

Altitude, biomedical testing, 357-363

Anterior cruciate ligament
- boot-induced anterior drawer, 273-274
- boot stiffness, 271-272
- force model, 271-272
- four-bar model, 270
- impact model, 269-270
- injuries in female racers, 105-110
- injury incidence, 4, 30-31
- male:female ratio, 106-108
- modeling forces, 267-275
- moment model, 271
- prevention, 112-118

Anterior drawer
- boot-induced, 268
- prevention, 115-118

Anthropometric dummy, ankle motion and binding release tests, 210-220

Antifriction device (AFD), boot insufficiency, 147

ASTM Practice F 939, 196

ASTM Specifications, Eye Protective Devices (F 659), 126

Avalanche victims, fatal skiing accidents, 64, 66

Axial loading at knee joint, 248-249

Axial rotation of lower limb
- dynamic system model parameter identification, 291-306
- torsional loading, 277-289
- in vivo static and dynamic measurements, 277-289

B

Backward falls
- anterior cruciate ligament injury, 115-116
- injury mechanism, 56, 58
- modeling forces on anterior cruciate knee ligament, 267-275

Barrier impact test
- ankle motion, 219-220
- binding release tests, 211-212

Beginning skiers, thumb injuries, 322

Bending release, mechanical programmed release bindings, 199

Bindings. See also Inadvertent release, Release bindings
- adjustment data, 59
- aging, 58
- ankle motion and release tests, 210-220
- cause of accidents, 34
- classification in Swiss study design, 55
- computer-controlled system for boot load measurement, 181-197
- data acquisition and control system, 184-186
- double pivot, 203-205
- dynamometer/release mechanism, 183-184
- fault survey, 20-21
- frequency of testing, 88-90
- injuries with correct mountings and settings, 59
Bindings (cont.)
load sensing, 203, 205-206
lower limb models, 306
mechanics, 5
mounting and setting errors, 19-20, 58
programmable mechanical release, 199-209
recreational skier injuries, 44-45
release mechanism, 182, 203, 206, 344
retention mechanisms, 182, 202-204
safety guidelines, 346
self-testing, 37-38
settings and inadvertent releases in racers, 222-227
setting values, 20-21
snowboarding, 79-80
Swiss ski injury study design, 54
test stations, 346-347
Biomechanical analysis, skier's thumb, 311-315
Biomedical testing, 6
Blinding, ski injury studies, 12-13
Bone failure locus, programmable release bindings, 201-202
Bone quasi-static injury region, racer binding settings, 222-223
Bone reference clamps, 280-281
Boot-binding unit (BBU) efficiency, 58-60
Boot-induced anterior drawer (BIAD), 268-269
anterior cruciate ligament injuries, 273-274
impact loads, 273-274
Boot load measurements
computer-controlled binding system, 181-197
physical parameters of test subjects, 186-187
Boots
acute arterial occlusion, 132-134
ankle dorsiflexion, 146-151
cause of accidents, 34
fit adaptation, 141-143
flex measurements, 167-177
foot pressure patterns, 137-144
lower leg prosthesis, 164
mechanics, 4-5
modeling forces on anterior cruciate knee ligament, 267-275
prevention of anterior cruciate ligament injury, 117-118
rear-entry versus traditional, 141-142
recreational skier injuries, 45-46
removal forces—classic versus rear entry boots, 153-159
safety guidelines, 346
skier preferences, 90
snowboarding, 80
Boot-ski frictional effects, 200-201
Boot stiffness. See Stiffness (boot)
Braces, knee, 118
Branch-changed amino acids, 363
"Brown's bow," binding release settings, 226
Buckle adjustments, foot pressure pattern, 140
C
Capacitive measuring system, foot pressure patterns in ski boots, 137-138
Case-control studies
ski injuries, 9-17
techniques, 14-15
Case studies, Swiss ski injury study design, 54
Causes of accidents, See also Accident mechanisms
Hemsedal, Norway study, 35
Children
collision injuries, 70-73
injury rates, 35-36, 38-39
racer binding settings and inadvertent release, 223-224
Clothing design, 6
major problem areas, 379
middle shell, 378-381
outer shell prototype, 378
thermal comfort, 374-383
Cohort study, ski injuries, 13-14
Cold weather clothing, 374-383
Collateral ligaments, torsional laxity of knee, 253
Collision injuries
age levels, 70, 72-73
epidemiology, 69-74
Hemsedal, Norway study, 34
injury rate, 38, 70
sex, 70, 73
skiing abilities, 72
snowboarding, 81
type and site of injury, 70
Comparability measurements, 9-17
of risk factors, case-controlled studies, 16
ski glove thermal resistance, 370-372
Competition skiing, See also Racers
prior injury rate, 90-91
thumb injuries, 323
Computers, See also Data acquisition and control
boot load measurements, 184-186
Conditioning. See Physical conditioning
Confidence intervals, odds ratios, 97
Confounded measures, injury risk studies, 95–96
Coordinate moments, three-dimensional knee loading, 253–254
Creatine kinase, biomedical testing, 361
Critical edge angles, shear-strength-to-hardness ratio, 333–334
Cross-country skiing history, 342–343

D

Data acquisition and control bindings, 184–186
clothing design, 375–376
hip and knee measurements, 234
Swiss ski injury study design, 53–54
Data reduction, knee strength and loading variables, 236–237
Deliberate selection case-controlled studies, 16
nonexperimental study, 14
Dorsiflexion ankle, boot design and, 146–151
traction force and variation, 155–158
value table, 148
Double pivot, programmable release bindings, 203–205
Duration moment input pulse joint rotations, 287–288
long duration—joint rotations, 298, 301
medium duration—joint rotations, 298, 300
short duration—joint rotations, 298, 302
Dynamic measurements axial rotation of lower limb, 285–289
parameter identification, 291–306
Dynamometer loading boot load measurements—parallel runs, 194–195
internal–external rotation measurements, 255–257
knee strength and loading variables, 237–238
traction force and variation, 155–158
Dynamometer/release mechanism bindings, 183–184
knee strength and loading variables, 232–233

E

Electromyography, hip and knee measurements, 233–235
Electronic binding, sensitivity to knee strength, 247–248
EMED-F pedography platform, 138–149
Empirical studies of ski injuries, 11
Energy absorption capability ankle motion binding release tests, 213
programmable release binding, 208
Epidemiology collision injuries, 69–74
comparability and control studies, 9–17
fatal skiing accidents, 63–68
ski injury trends, 25–31
Swiss study design, 51–61
Equipment design accident mechanisms, 321–322
injury incidence, 24
Ergonomic study metacarpophalangeal joint, 316–325
thumb injuries, 324–325
Estimated models, joint rotation, 303–304
Exercise, torsional laxity of knee, 253
Experimental prospective injury study, 18–24
Experimental study design, 11–13
Expert skiers, thumb injuries, 322–323
External rotation, weight bearing, 289
Eyewear-related ski injuries, 126–130
National Electronic Injury Surveillance System Review, 128
National Ski Areas Association (NSAA)/ASTM study, 129
Sugarbush North 15-year study, 129

F

Falls, See also Backward fall, Forward fall
injury mechanism, 56, 58
skiing experience, 22–23
Fatal skiing accidents, 63–68
Feasibility, ski injury studies, 13
Field testing, hip and knee measurements, 235–236
Finite element analysis, torsional loading—lower limb rotation, 292–293
Fitness training, ski injury incidence, 14–15
Flexible training, ski injury incidence, 14–15
Flexible training, ski boots, thermal resistance, 367–373
Flexion foot pressure pattern in ski boots, 140–141
hip and knee measurements, 233–234
joint rotation, 289
stiffness, 284
Flex measurements, ski boots, 167–177
Foam insulation, protective clothing, 379, 381

Foot pressure pattern
 biomechanical model, 139
 boot type variations, 141–142
 buckle adjustments, 140
 flexion increases, 140–141
 influence of fit, 141–143
 ski boots, 137–144

Force model, anterior cruciate ligament, 271–272

Forward fall, injury mechanism, 56, 58

Four-bar model, anterior cruciate ligament, 270

Four-degree-of-freedom model, torsional loading—lower limb rotation, 292–293

Free body diagram, foot pressure pattern, 139

F_x force
 boot load measurements
 parallel runs, 190–195
 snow plow runs, 187–188
 double pivot binding construction, 205
 three-dimensional knee loading, 257–259

F_y force
 boot load measurements—parallel runs, 191–195
 double pivot construction, 205
 field test runs, 197
 three-dimensional knee loading, 257–259

F_z force
 boot load measurements—parallel runs, 190–195
 snow plow runs, 187–188
 double pivot construction, 205
 three-dimensional knee loading, 257–259

G

Gamekeeper's thumb, 311–315

Geometry, tool-snow interaction, 332–333

Grooming conditions
 recreational skier injuries, 46–47
 skier preferences, 90–91

H

Hamstrings, muscle activity—snowplow and parallel maneuvers, 245, 247

Head injuries
 age-related incidence, 35, 38–39

Hemmedal, Norway study, 33–34
 rates in children, 35–36
 recreational skier injuries, 48
 snowboarding, 81

Heel element, boot stiffness, 2

Heel fixation device, 161–162, 165

Heel release
 Achilles tendon stimulation device, 160–166
 adverse effects, 200–201

Heel-toe mechanism
 programmed release bindings, 199

Helmets
 safety studies, 347
 snowboarding, 81

Hematocrit, biomedical testing, 357–363

Historical background of skiing, 342–343

Hydration, biomedical testing, 357–363

Hysteresis, joint rotation, 284–285

Inadvertent release, injury rates, 21–22

Incidence of injury
 defined, 10
 skier's thumb biomechanics, 312

Information bias, injury risk studies, 100–101

Infrared thermography, ski gloves, 367–373

Injury mechanism
 classification in Swiss study design, 55–59
 recreational skiers, 43
 skier's thumb biomechanics, 311–315
 Swiss ski injury study design, 53
 unilateral fracture, lumbar spine, 120–123

Injury rate
 decline, 30–31
 Hemmedal, Norway study, 33
 inadvertent release, 21–22
 release bindings, 344
 snowboarding, 77–78

Internal binding friction, 200–201

Internal-external rotation
 ankle complex, 258, 262–264
 three-dimensional knee loading, 252–265

Internationaler Arbeitskreis Sicherheit beim Skilauf (IAS)
 experimental prospective injury study, 19
 Specification 80, 19, 22
 Standard 150, 147

Intervention, risk factors, 11–13
Interview techniques, case-controlled studies, 15
In vivo measurements
 lower limb axial rotation, 277–289
 static and dynamic measurements, axial
 joint rotation, torsional loading, 277–289

J
Jackets, design prototypes, 376–377
Joint compression, torsional laxity of knee, 253
Joints
 angles in snowplow, 242
 axial loading at knee, 248–249
 male versus female, 148
 range of motion and boot stiffness, 147–149
 rotation, torsional loading, 277–289
 stiffness, weight bearing, 282–283
 strength and loading variables, 232
 torque, axial rotation curves, 282–283

K
Knee anatomy, 109
 three-dimensional loading, 252–265
Knee injuries. See also Anterior cruciate ligament
 axial joint rotation, torsional loading, 277–289
 binding design, 247–249
 Hemsedal, Norway study, 33–34
 injury rate trends, 6, 30–31, 38
 male:female ratio, 106–108
 modeling forces on anterior cruciate knee ligament, 267–275
 programmable release bindings, 202
 recreational skier injuries, 47–48
 snowboarding, 78, 80
 strength and loading variables, 231–249
Knee stiffness
 straight conditions, 289
 three-dimensional loading, 257–260
 weight bearing or muscle resistance, 289

L
Lacerations
 eyewear-related, 130
 injury rate decline, 30
 snowboarding injuries, 79
Lactic acid, biomedical testing, 357–363
Lactic dehydrogenase, biomedical testing, 361
Lactic dehydrogenase I isoenzyme, 362
Lateral collateral ligament (LCL), 268
Lateral release, 61
Lenses, eyewear-related skiing injuries, 126–130
Lift capacities
 collision injuries, 73
 Hemsedal, Norway study, 34
 skiing injuries, 85
Ligament biomechanics. See also specific ligaments
 thumb injuries, 313–314
Load sensing
 programmable release bindings, 203, 205–206
Lower extremity equipment-related (LEER) injuries
 acute arterial occlusion, 132–134
 bindings, 45
 inadvertent release, 21–22
 injury rate
 in children, 35–36
 decline, 30–31
 trends in, 26–28, 38
 programmable release bindings, 202
 recreational skiers, 43, 47–48
 snowboarding, 78–79
Lower extremity mechanics, 5
Lower leg prosthesis
 Achilles tendon stimulation device, 160–166
 dimensions and force components, 162, 165
 flex measurements on ski boots, 167–177
Lower limb axial rotation, torsional loading dynamic system model, 301–306
in vivo static and dynamic measurements, 277–289
Lumbar spine, unilateral fracture, 119–125

M
Machining theory
 shear-strength-to-hardness ratio, 334
 snow conditions, 330–331
Mean days between injuries (MDBI) equation, 27, 30
Mean rectified electromyogram (MREMG), 234
Mechanical binding with program release, 199–209
Mechanism of injury. See Injury mechanism
Medial cruciate ligament, 268
Meniscus injuries, prevention, 112, 117
Metacarpophalangeal joint
 ergonomic study, 316–325
 skier’s thumb biomechanics, 311–315
Modeling forces, anterior cruciate ligament, 267-275
Moment model, anterior cruciate ligament, 271
Moment pulses, in vivo joint rotation, 289
Moments
ankle motion binding release tests, 213-217
averages for Salomon and Nava bindings, 213, 218
Moment-versus-rotation relationship, 253
Mountain ski touring, biomedical testing, 357-363
Mr (resultant binding moment), ankle motion binding release tests, 213-217
Multivariate analysis, 14
Muscle activity
knee stiffness, 283-284
maximum voluntary contraction (MVC), 236
normalized, in snowplow, 24-243
strength and loading variables in knee, 231-249
torsional laxity of knee, 253
Muscular enzymes, biomedical testing, 357-363
Musculature, programmable release bindings, 200-202
Mx, knee strength and loading variables, 236-237, 240-241, 244-247
Mx force, boot load measurements
parallel runs, 193-195
snow plow runs, 189-190
My, knee strength and loading variables, 236-237, 240-241, 244-247
My force
boot load measurements
parallel runs, 191-195
snow plow runs, 187-189
double pivot construction, 204-205
field test runs, 196-197
mechanical programmed release bindings, 199
three-dimensional knee loading, 257-259
Mz force, knee strength and loading variables, 236-237, 240-241, 244-247
Mz force
ankle motion binding release tests, 213-217
boot load measurements—parallel runs, 193-195
double pivot construction, 204-205
field test runs, 196-197
mechanical programmed release bindings, 199-200

N
Nava system boot and binding
ankle motion release tests, 211
moment measurements
ankle motion 27.5°, 213, 215
ankle motion 44°, 213, 217
Nonexperimental study design, 13-17
Nontraumatic accident characteristics, 64, 67-68

O
Occurrence rate of ski injuries, 10-11
Odds ratio
ability, physical condition and injury risk studies, 96-99
reliability, 100-101
Off-piste (deep snow) skiing areas. See also Powder skiing
fatal accidents, 64, 66
ski pole design, 317-318
On-piste skiing, fatal accidents, 64-66
Otto Bock "Greissinger" foot prosthesis, 211
Overheating, protective clothing, 378-379

P
Pants, design prototypes, 376-377
Parallelogram linkage goniometer
internal-external rotation measurements, 255-257
Parallel runs
boot load measurements, 190-195
knee strength and loading variables, 243-247
Parameter identification
axial rotation of lower limb, 291-306
least error models, 298-299
single-degree-of-freedom model, 297-298
Passive stress, anterior cruciate ligament mechanics, 113-115, 117
Patellar Tendon Force, 115-116
Physical conditioning. See also Exercise, Skiing gymnastics
injury risk, 4, 94-101
Placebo intervention, ski injury studies, 13
Pneumatic exciter, axial joint rotation, torsional loading, 279-281
Poles
eyewear-related ski injuries, 127
straps and thumb injuries, 313-314
thumb injuries, 317-318
thumb impact against handle, 320-321
Pole tests
 ankle motion binding release, 211–212
impact tests, ankle motion, 219–220
Polycarbonate lenses, 126
Powder skiing. See also Off-piste skiing
recreational skier injuries, 48
skiing ability, 91–92
Precipitation, protective clothing, 378
Prior skiing injuries
 skier behavior, 86
 statistics, 90–91
Programmable release binding
 design elements, 202–206
 prototype testing and evaluation, 207–209
Prospective ski injury study, 18–24
 skier’s thumb ergonomics, 317
Protective clothing, 374–383

Q
Quadriceps force
 anterior cruciate ligament mechanics, 115–116
 muscle activity—snowplow and parallel
 maneuvers, 247
Quasi-static measurements, axial joint
 rotation, torsional loading, 277–285
Questionnaires
 ability, physical condition and injury risk
 studies, 95–96
 anterior cruciate ligament injuries, 106–107
 case-controlled studies, 15–16
 clothing design, 375–376
 experimental prospective injury study, 19
 racer binding settings and inadvertent
 release, 223
 skier behavior, 86
 Swiss ski injury study design, 53–54

R
Racing skiers
 anterior cruciate ligament injury, 105–110
 binding settings and inadvertent releases, 222–227
Radial ligament, thumb injury, 321–322
Raid Blanc ski competition, 357–363
Rear-entry boots, foot pressure pattern,
 138–139, 141–142, 144
Rear-entry boots, removal force
 measurement, 153–159
Recentering, programmable release binding, 208
Recreational skiers
 equipment-related factors, 44–47
 injury rates, 41–49
 injury type and location, 42–43
 skier-related injury factors, 43–44
 skiing behavior, 85–92
 “Reduced opposition” thumb-index grip, 325
 Regression analysis
 ankle dorsiflexion, 149–151
 ski injury trends, 27–28
 Release bindings
 coefficient of friction standard, 350
 safety studies, 344
 Release locus, programmed release bindings, 202–209
 binding prototype and testing, 207–209
 Release mechanism
 energy absorbed, 205–206
 inadvertent in racer binding settings, 222–227
 injury types and risk factors, 58, 60
 lateral release, 61
 programmable release bindings, 203, 206
 sensitivity to knee strength, 247–248
 tests with ankle motion, 210–220
 Repeatability tests, joint loading, 284–285
 Retention envelope, boot load measurement, 195–196
 Retention mechanism, programmable release
 bindings, 202–204
 Retrospective case-controlled studies, 16
 Risk factors
 ability and physical condition, 94–101
 case-controlled studies, 14–15
 intervention, 12–13
 ski injuries, 9–17
 Rotational potentiometer, flex measurements
 on ski boots, 168–169
 Rotation of thumb, thumb injuries, 314–315

S
Safety programs
 Norwegian programs, 342–351
 overview, 5–6
 Swedish programs, 350
 television shows, 339–341
Salomon binding
 moment measurements
 ankle motion 27.5°, 213–214
 ankle motion 44°, 213, 216
 747 binding, ankle motion release tests, 211
 “Security clips”, thumb injuries, 324
Self-test of binding release
frequency statistics, 91-92
injury rates, 37-38
safety studies, 347-349
skier behavior studies, 88-90

Serum glutamic oxalacetic transaminase levels, 360
Serum glutamic pyruvic transaminase, 360

Setting values for bindings, 20-21

Sex and injury rates
collision injuries, 70, 72-73
recreational skiers, 43-44
skier behavior, 86
snowboarding injuries, 77-78
trends, 36

Shear-strength-to-hardness ratio, 33

Shoulder injuries, Hemsedal, Norway study, 33-34

Single-degree-of-freedom joint rotation—duration moment input pulses, 301-302
limits of, 306
parameter identifications, 304-305
torsional loading—lower limb rotation, 293-299

Six-degree-of-freedom strain gauge dynamometer, 255-257

Skier behavior
injury rates, 4
recreational skiers, 85-92
safety studies, 347

Skier's thumb
biomechanical analysis, 311-315
eryngonomic study, 316-325
experimental prospective study, 22-23
grip designs, 23-24

Ski gloves, thermal resistance measurements, 367-373

Ski gymnastics, injury rates, 99-100

Skiing ability and experience
accident mechanisms, 321-322
boot stiffness and, 147-151
collision injuries, 72
frequency of falls, 22-23
injury rates, 37
injury risk, 94-101
recreational skier injuries, 44-46
skier behavior, 87

Skiing instruction
attendance figures, 91
injury rates, 98-99
recreational skier injuries, 44-46, 48
safety training, 350-351
skier behavior, 87-89

Ski injuries
ability and physical condition, 94-101

biomechanical analysis—lower leg prosthesis, 160-166
boot removal traction force and variation, 153-159
classification in Swiss study design, 55, 57
defined, 9-10, 41-42
epidemiological methods, 3-4, 9-17
experimental study design, 11-13
eyewear-related eye injuries, 126-130
Hemsedal Norway study, 32-39
nonexperimental study design, 13-17
Norwegian registration, 346
occurrence, 10-11
risk factors, 11
snow conditions, 329-336
television safety programs, 339-341
trends, 25-31
unilateral fracture, lumbar spine, 119-125

Ski instructors' clothing prototypes, 374-383

Skill levels, snowboarding injuries, 78-79

Ski mountaineering fatalities, 67-68

Ski poles. See Poles

Skis
orientation in skidding turn, 335-336
recreational skier injuries, 45-46
release modes and axes, 200
skier preferences, 90

Ski-snow interface, 330-336

Ski stance, parameter identifications—joint rotation, 304-305

Slalom racing
binding settings and inadvertent release, 223-224
release mechanisms, 226
S level binding indicator settings, 224-225
Slope conditions. See also Snow conditions
collision injuries, 73
recreational skier injuries, 46-47
skier preferences, 90-91

Snowboarding
attachment technologies, 76-77
injuries, 75-81
skill levels, 78-79

Snow conditions
epidemiological studies, 5
ski injuries, 329-336

Snowplow runs
boot load measurements, 186-189
knee strength and loading variables, 238, 240-243

Spinal injury in skiing, 119-125

Spiral fractures, mechanical programmed release bindings, 199-200

Sprain mechanism, ergonomic study, 316-325

Stiffness (boot)
ankle dorsiflexion, 147-151
ankle motion binding release tests, 213-217
anterior cruciate ligament model, 271-272
flex measurements, 167-177
maximum force on ACL, 273-275
modeling forces on anterior cruciate knee ligament, 267-275
size variation and flex measurements, 168-177
weight bearing, 302-303
Strain/sprain injuries in snowboarding, 79
Straps on ski poles
ergonomic studies, 324-325
thumb injuries, 317-319
Strretokinase, acute arterial occlusion, 132-134
Stress. See Active stress, Passive stress
Subtalar joint, 252-265
Sunglasses, eyewear-related ski injuries, 126

T

Teleradiology measurements, 112-113
Television safety programs, skiing injuries, 339-341
Terminal stiffness, defined, 281-282
Test stations for bindings, 346-347
Textile materials, thermal comfort, 374-383
Thermal resistance
clothing design prototype, 374-383
defined, 371-372
measurements, ski gloves, 367-373
Thigh-hip dynamics, joint rotation, 285, 288-289
Thinsulate fabric, 378-381
Three-degree-of-freedom model
parameter identifications, 299, 302-304
torsional loading—lower limb rotation, 293-299
Three-dimensional loading of knee, 252-265
average and standard deviation, 258, 261
median primary laxity, 258, 262
Thumb injuries. See also Skier’s thumb
beginning skiers, 322
biomechanics, 5
closed fist impact in snow, 320
competitors, 323
expert skiers, 322-323
forced by strap, 318-319
Hemsedal, Norway study, 33-34
impact in snow, 319
joint impact against ski pole, 320
professional skiers, 323
skiers’ equipment, 324
Thumb position, ergonomic studies, 325
Tibia, heel fixation, traction angle and
Achilles tendon force, 162, 166
Tibia fractures
binding function, 22-23
boot insufficiency, 147
mechanical programmed release bindings, 199-202
snowboarding, 80-81
Toe release torques, inadvertent in racer
binding settings, 222-223
Torque limits
joint rotations, 285-286
weight bearing or muscle resistance, 289
Torsion
ankle motion, 219-220
force and moment components, 263-264
laxity, 252-265
loading, 291-306
lower limb, 277-289
release, mechanical programmed bindings, 199
Traction
lower leg prosthesis, 164
force and angle variation, ski boot
removal, 155-158
Traumatic accident characteristics, 64-66
Tree collision injuries, 69-74
Triceps surae muscle, Achilles tendon
stimulation device, 160-166
Turns (left and right), knee strength and
loading variables, 238, 240-243
Two-parameter power law, knee
moment-rotation, 265

U

Ulnar collateral ligament rupture, 311-315
Ultraviolet protection, eyewear-related ski
injuries, 127
Uncontrolled confounding techniques
information bias, 100-101
injury risk studies, 95
Unilateral fracture, lumbar spine, 119-125
Upper body injuries
collision injuries, 73
ergonomic study, 317-325
injury rate trends, 30
snowboarding, 81

W

Warming-up exercises, injury rates, 99-100
Weight bearing
parameter identifications—joint rotation, 304-305
stiffness values, 302-303
Women. See also Sex and injury rates
anterior cruciate ligament injuries, 105–110
LEER injuries, 36

recreational skiers, 43–44
skiing instruction attendance figures, 91
ski injury rates for, 4
World Cup racers, prior injury rate, 90–91