Subject Index

A

Absorption—airways gas transport, 115–117, 121

Absorption efficiency, 119, 210(fig), 121(table)

Acid aerosols
and asthma, 207–213
sensitivity, 49

Adaptive immune system, 33, 34

Adolescent subjects, 207

Adverse health effects of ambient air pollutants, 6–8

Aerosol bolus technique, 97, 127–138

Aerosol boluses
diagnostic use, 137
dispersion in exhaled air, 130–131(figs)
dispersion in patients with asthma or emphysema, 132(fig)
inhalation apparatus for lung studies, 128(fig)
technique, 127

Aerosols
airway hyperresponsiveness, 50
and asthma—adolescent subjects
after exercise-induced bronchospasm, 208
forced expiratory volume (FEV), 210(fig)
methods of study, 208–209
physical characteristics of subjects, 209(table)
pulmonary function values, 210(table)
results, 209

Age factors
relationships between human and animal ages, 151
sensitivity to hyperoxia in animals, 24
susceptibility to inhaled pollutants, 148

Aged populations
affected of increases in pollutant levels, 149

Air pollution
acute respiratory responses, 75
adverse health effects, 7–20
asthma, 68
chronic respiratory illness, 174
epidemiologic studies, 7–20, 184
health effects, 8–9, 49, 57
individual response—variability, 76
inhaled chemicals, 100–110
oxidants and bacterial infections, 184
standards development, 6–20
study group responses, 55, 57
susceptible populations, 3–4, 6–20, 141

Air pollution episodes, 3–5

Air pollution exposure, asthmatic subjects—selection for study, 61(table)

Air quality guidelines
World Health Organization, 110

Airborne gaseous contaminants—upper respiratory tract
airflow through different airways, 102–103
chemical and physical properties, 100
effects of ventilation parameters, 101(fig)
scrubbing, 105

Airflow patterns through the human head, 101(fig)

Airway anatomy, 113

Airway charting
tracheobronchial tract, 132

Airway gas transport, 115, 116(fig), 117(table)

Airway hyperreactivity/reactivity
allergens, 39
asthma, 49
inhaled chemicals, 39
nitrogen dioxide and asthma, 218–223
ozone exposure, 188
respiratory tract infections, 39

Airway hyperresponsiveness, 49–52

Airway inflammation, 52

Airway resistance, 103(fig), 130(table), 195

Airway responsiveness—asthma See also
Airway hyperresponsiveness
epidemiological studies, 68–74
Airway scrubbing, 100–110
Airway smooth muscle
mechanisms for minimizing contraction, 50(fig), 51(Tables)
Airway transport model, 124
Allergy, 141, 144
Alveolar macrophage (AM)
cells in lavage fluids, 36
function in animals, 187
principal phagocytic cell in airways, 35
Alveolar ventilation, diffusion and perfusion, 118(fig), 120
Ambient air pollutants
physiological response, 76-77
susceptible populations, 6-19
Ambient air standards, 6-19
Agina pectoris
adverse effects
ambient air pollutants, 9-11
of carbon monoxide exposure, 10
Animal studies—literature review, 149, 150(table)
Antimicrobial defense of lower respiratory tract, 187
Asbestos fibers
tissue injury in animals caused by inhalation of particulates, 28(fig), 30
Asthma
acid aerosols, 207-213
aerosol boluses, 132
air pollution exposure, 61(table), 68
airways responsiveness, 4, 49-55, 58
and wheeze, 143
clinical and epidemiological studies, 57-67
environmental pollution conditions, 219-220
epidemiology, 57-67, 219
identification of susceptible populations, 56, 57
in children, 143, 144
mechanisms of susceptibility, 40-41
nitrogen dioxide exposure, 60(table), 218-220, 221(table)
nonuniformity of ventilation distribution, 55
occupational, 38-39, 40(table)
ozone effects, 56
ozone or oxidant exposure, 60(table)
population surveys, 62(table)
role of immune cells and mediators in pathogenesis, 39
sensitivity, 49
sulfur dioxide-induced bronchoconstriction, 195
susceptibility, 58
sulfur dioxide exposure, 59(table)
Asthmatics
air pollution exposure, 55-56, 61(table), 57-67
airway responsiveness
inhaled antigen, 216
nitrogen dioxide, 218
ozone, 215
sulfur dioxide exposure, 59(table)
sulfur dioxide inhalation in exercise and resting, 196, 198
exercise, 198
forced expiratory volume, 62(table)
health effects of sulfuric acid inhalation, 207
sulfur-dioxide exposure, 59(table)
B
Bacterial infections—oxidants, 184
BAL. See Bronchoalveolar lavage.
BALF. See Bronchoalveolar lavage fluid.
Biological markers. See Immunological markers
Blood flow patterns during exercise, 113(table), 115
Bohr model—gas transport, 117
Breathing pattern variations
climatological factors, 102-103
exercise, 104
oronasal breathing, 102-104
Bronchial circulation, 115
Bronchial hyperreactivity
general population, 144
Bronchial responsiveness of asthmatic subjects
epidemiological studies, 68-69
Bronchiolitis, 55
Bronchitis
eyear early childhood, 143
Bronchoalveolar lavage (BAL), 35, 188
fluid (BALF)
Bronchoconstriction in asthmatics
sulfur dioxide exposure, 195-199
Bronchoconstrictor effects of air pollutants, 52
Bronchoconstrictor stimuli, 50
Bronchospasm, exercise induced, 208
C
Carbon monoxide exposure
Criteria Documents for CO exposure
EPA-600/8-79-011, 9
EPA-600/8-83-033F, 10
INDEX 237

Deficiencies of nutritional components affect lung size, structure and function, 170
Deposition of insoluble particles in human subjects, 92
Dermatophagoides pteronyssinus (house dust mite), 39
Diagnostic methods for study of human lungs, 127
Diffusion, alveolar, 118(fig)
Diffusion limited behavior absorption efficiency, 119, 120(fig)
Diffusion, pulmonary, 111, 116, 117(fig)
Diffusion resistance, 116, 117(table)
Disease
 individual predisposition, 3
 mechanisms of inhaled pollutants, 224
Dispersion—aerosol bolus, 127–131(figs)
Dose-response
 inhaled pollutants, 224
Dosimetry
 biological indicators of dose carboxyhemoglobin in blood as measure of carbon monoxide exposure, 100
 exercise factors, 91–99, 111–126
 lungs, 100–110
 respiratory tract susceptibility to inhaled gases and particles, 91–99
 mathematical models, 97

E

Elastin metabolism (lung elastin)
 animal studies, 166–167
Emission standards
 for hazardous pollutants, 7
Emissions
 respiratory effects of indoor air pollutants, 40
Emphysema
 aerosol boluses, 132
 variations in gas distribution, 55–56
Emphysema-like lesions
 nitrogen dioxide exposure, 12
Environmental exposure to inhaled pollutants, 230
Environmental exposure chambers, 76
Environmental pollutants
 effects of inhalation into tracheobronchial tree, 113
 immunological markers of susceptibility, 33
 safety standards for exposure, 23
 tobacco smoke—passive exposure in childhood, 146

D

Defense mechanisms
 animal response to oxidant exposures, 30(fig)

EPA-450/5-84-004
45FR 55066 (Federal Register, August 1980), 10
health effects, 6–19
susceptible populations, 4, 6
Carboxyhemoglobin
 biological dose indicator for carbon monoxide, 100
 carbon monoxide reaction with hemoglobin, 8
Cardiovascular patients
 adverse effects
 of ambient air pollutants, 9–11
 of carbon monoxide exposure, 10
CASAC. See Clean Air Scientific Advisory Committee
Cell injuries in animal lungs
 from breathing oxidant gases or inhaling particulates, 27(fig)
Charting human airways, 127
Chemiluminescent detector determinations of nitrogen dioxide concentrations, 105
Chemotaxis, 34
Childhood, early
 lower respiratory illness, 142
Children
 susceptibility to chemicals, 3
Chronic obstructive airways diseases, 141–147
Chronic obstructive pulmonary disease (COPD),
 air quality criteria document, 175
 risk factors, 175(table)
Chronic respiratory disease
 pathogenesis, 227, 228(fig)
Circulation—blood flow, 115
Clean Air Act (CAA) of 1970. See Standards
Clean Air Scientific Advisory Committee (CASAC), 6–19
Clearance, 127
Climatological factors in breathing patterns, 103
Clinical and epidemiological studies subject selection, 64–65
COPD. See Chronic obstructive pulmonary disease
Criteria pollutants, 6–7
Cystic fibrosis, 55
Environmental Protection Agency (EPA)
See also Standards
Clean Air Act, 6–19
Epidemiologic studies
air pollution, 8–14, 184
airways responsiveness, 68–72
animal infective models, 185
asthmatics, 57–67
methodology, 57–67, 72
Epithelium
possible barrier to bronchoconstrictors, 50
Exercise
airflow patterns in upper respiratory tract, 101(fig)
airway concentrations—response, 124–125
asthmatics, 190
effect on distribution of ozone dose, 123(fig)
effect of turbulence in airways, 114(fig)
experimental regimen for gases and particles, 91
influence on regional respiratory tract dosimetry, 92–93
regional dosimetry, 96, 97(fig), 110, 111–126
upper airway scrubbing, 100
Exercise-induced bronchospasm, 208
Experatory volume, forced. See Forced expiratory volume (FEV)
Experimental design for clinical and epidemiological studies of asthma, 57
Expired aerosol boluses—dispersion, 129
Exposure-dose response relationships inhaled pollutants, 4–5, 229, 230(fig)
Exposure duration
asthmatics exposed to sulfur dioxide, 199–200
Exposure temperature/humidity
bronchoconstriction in asthmatics exposed to sulfur dioxide, 200–202
Feedback mechanisms
in immune system, 34
Fetus, 3–4
Fiberoptic bronchoscopy
in diagnosis of lung disease, 35, 188
Forced expiratory volume (FEV)
asthmatics, 62–64(figs), 69(fig), 210(fig)
Gas stoves
source of nitrogen dioxide, 219
Gas transport in airways
exercise and regional dosimetry, 111–126
Gas uptake from respiratory zone, 118(fig)
Gaseous contaminants—airborne, 100
Hazardous air pollutants
adverse health effects, 7
Clean Air Act of 1970
Section 109(b) (1), 7
Section 112, 8
national emission standards, 7
Health effects of air pollution, 6–19, 49, 57–58
Host factors
asthma studies, 57
House dust mite
may induce airway hyperreactivity, 39
Human alveolar macrophage, 188
Human exposure research, 13–14, 91
Human exposure to oxidants, 188
Human immunodeficiency virus, 187
Human respiratory infection
ozone may increase susceptibility to experimental bacterial infection, 185
Human respiratory tract
aerosol boluses for diagnostic purposes, 137
ozone irritation, 174
Hygroscopic particles
respiratory tract deposition, 91, 94, 95(table)
Hyperoxia
acute lung injury, 23
animal studies, 23–31
age sensitivity, 24
effects of lethal and sublethal levels in animals, 24, 25(figs)
enhanced oxygen tolerance in younger animals, 163
Hyperreactivity in the lung, 41, 43
Hyperresponsive airways, 207
Hyperresponsiveness, 42, 51(table)
Hypersensitivity pneumonitis, 38, 39(table), 40(table)
I

Immune response
reaction to infectious agents, 33
Immune system
control mechanisms, 33-34, 42
Immunologic lung disease. See Lung disease
Immunological markers of susceptibility
chemicals associated with work environment, 38, 39(tables)
hypersensitivity pneumonitis, 38, 39(table)
modulation and detection, 35-37
of sarcoid in BAL, 37(table)
prediction of susceptibility to inhaled pollutants, 32-46
questions, 34-35
respiratory tract dosimetry, 91-99
response of laboratory animals, 149
response to environmental stimuli, 34
susceptibility—age and aging in animals, 157-159
susceptibility of immature animals, 153-157
susceptibility of maturing animals, 158-159
susceptible individuals, 224-231
Inflammation
airway responsiveness, 49-54
markers, 34, 41
reaction to injury, 33
Inflammatory lung disease. See Lung disease.
Inhalation technique
for study of human lung characteristics, 127
radioactively labelled particles for smokers and nonsmokers
clearance curve, 135
Inhalation toxicology
airway branching patterns, 30
animal studies, 23, 29, 30
asthma and nitrogen dioxide, 218-222
tissue injury, 30
Inhaled pollutants and toxicants
age factors, 148
chemicals, 100-110
clinical and epidemiological studies of asthma, 63(figs)
deposition in larynx, 98
deposition in lung, 106-107
dose-response, 224
gas pollutants and genetic control, 41
immunological markers, 32-46
particles, 91-99
present standards reflect young-to-mid-aged adult population, 148
respiratory tract dosimetry, 91-99
response of laboratory animals, 149
susceptibility of aged animals, 159
susceptibility of aging animals
to nitrogen dioxide, 157-158
to synthetic smog, 158
susceptibility of immature animals
cigarette smoke, 157
diesel exhaust, 156-157
nitrogen dioxide, 153-154
oxygen, 156
ozone, 154-156
sulfur dioxide, 156
susceptibility of maturing animals, 158-159
susceptible individuals, 32, 37
Innate immune system, 33
Insoluble particles
respiratory tract deposition in humans, 91-99
Interstitial lung disease. See also Lung disease.
inherited
familial idiopathic pulmonary fibrosis, 42
pulmonary sarcoidosis, 42
role of genetic factors, 42
Isocyanate
immunologic testing of exposed workers, 42

L

Lead See also Standards susceptible populations, 4, 7, 10-11
Lower airways, 111
Lower respiratory illness
in early childhood, 142
respiratory syncytial virus, 142
Lung antioxidant defenses, 162
Lung disease, obstructive, inflammatory and interstitial
bronchiolitis, 55
fiberoptic bronchoscopy, 36
immunopathogenesis, 36
individual variability—response to ozone exposure, 86
susceptible populations identification, 55
ventilation distribution, 55
Lung disorders, 32
Lung dosimetry
- lower airways gas transport, 111–126
- upper airway scrubbing, 100–110

Lung elastin—metabolism
- animal studies, 166–167

Lung function
- affected by severe nutritional deficiencies, 170
- age factors, 148
- design of clinical laboratory studies, 180
- in children, 142–145
- inhalation exposures to pollutants affected by age, 149

Lung function studies, 16, 41

Lung injury
- animal studies of sensitivity to pollutants, 23–31
- caused by oxidant gases, 26, 27(figs), 29(figs)
- chronic damage from inhaled chemicals, 100
- morphologic changes during exposure to hyperoxia, 25–26(figs)
- nonuniformity of ventilation distribution in asthmatics, 55
- response to exercise, 111

Lung mass transfer coefficients, 111–126

Lung studies—aerosol boluses, 127–138

Lung tissue damage
- nitrogen dioxide exposure, 12

Lungs, human
- aging during adulthood, 152
- antioxidant defense mechanisms, 162
- growth from birth to adulthood compared to laboratory animals, 151
- study of characteristics, 127
- susceptibility to inhaled pollutants, 151–152

Mass transfer coefficients, lung, 111, 116(fig)

Mathematical modeling
- airway transport model, 124(fig)
- Bohr model, 117, 122, 123(fig)
- exercise and dosimetry, 122–123
- transport of insoluble gases, 123

Mechanisms of predisposition to disease
- inhaled pollutants, 3
- metabolism, 3
- vulnerability, 3

Metabolism
- mechanisms for predisposition to disease, 3

Modelling response
to identify responsive individuals, 79

Mucociliary transport
- adversely affected by exposure to oxidants, 186

N

NAAQS. See National Ambient Air Quality Standards

Nasal airway resistance and airflow, 103(fig)

Nasal breathing, 102

National Ambient Air Quality Standards (NAAQS), 6, 227

See also Standards

National Emission Standards for Hazardous Air Pollutants (NESHAP), 7

See also Standards

NESHAP. See National Emission Standards for Hazardous Air Pollutants

Nitrogen dioxide See also Standards
- air quality standards, 12–13
- altered lung function, 12
- asthmatic subjects—selection for clinical studies, 60(table)
- effect on airway responsiveness in asthmatics, 52, 68
- emphysema-like lesions, 12
- epidemiology and asthma, 219–220, 221(table), 222
- exercise and dosimetry, 91
- exercise-related ventilatory changes, 108, 109(table)
- experimental measurement of upper respiratory tract scrubbing in test animals, 105, 106(fig)
- exposure, 13, 37–38
- lower respiratory tract (lung), 107
- pulmonary effects in asthmatics, 221(table)
- resistance, 38
- susceptible populations, 7, 10–11
- treatment with vitamin C, 222
- uptake in head and lungs of dogs, 108(fig), 109(table)

Nonspecific immune system, 33

Nutrition
- amino acid deficiencies, 162
- antioxidant defense mechanisms
 - copper, 162
 - selenium, 162
 - vitamin C, 163
vitamin E, 162
zinc, 162

O
Occupational asthma, 39, 40(table)
Occupational exposures
inhaled pollutants, 32–46
Oral breathing, 102
Oronasal breathing, 100
Oxidant effects on macrophage-virus interaction, 187
Oxidant exposure *See also* Ozone
linked to susceptibility to infection, 189
relationship to chronic obstructive pulmonary disease, 174–175
relationship to respiratory infection, 182
Oxidant gas
exercise and dosimetry, 96, 97(fig)
lung injury, 26–27
See also Ozone
Oxidant injury
lower respiratory tract, 23–26
Oxidant pollutants
modulation of immunological markers, 37
Oxidants
bacterial infections, 184
exercise and regional dosimetry, 91–99
potential cocarcinogens or promoters, 169–170
viral infections—animal infectivity models, 185
Oxygen
animal studies
effects of low protein diet, 164
sensitivity to lung injury, 23–31
mortality of exposure, 25(fig)
toxicity—animal studies, 163
Ozone or oxidant exposure *See also* Oxidant exposure, Standards
air quality standards, 6–20
animal studies on sensitivity, 27–28(figs)
exercise and dosimetry, 91
airway responsiveness, 49–54
asthmatic subjects—selection for clinical studies, 60(table)
epidemiologic studies, 214
experimental design for studies, 179
human exposure health effects, 14
human health consequences, 174
human lung uptake, 96, 97(fig)
in asthmatics, 214–215
individual respiratory responses, 75, 82–84
individual variability, 84–85
injury from inhaled oxidants, 183
lung function responses, 178–179(figs)
population studies, 183
reactivity laboratory study—design, 177
respiratory effects, 85
risk assessment studies—design, 180(tables)
susceptibility to inhaled pollutants, 224
susceptible populations, 6, 13–14, 23

P
Particle concentration monitoring aerosol bolus, 128(fig), 129(fig)
Particle recovery from respiratory tract 133(fig)
Particulate matter
criteria documents, 6
deposition data, 93
exposures, 16–18
thoracic deposition, 93
tracheobronchial deposition, 93(fig)
Passive tobacco smoke
relationship to lung function in childhood, 144
Perfusion
absorption efficiency, 120(fig), 121(table)
Perfusion, alveolar, 118, 120
Perfusion-limited behavior
absorption efficiency, 119, 120(fig)
Perfusion, pulmonary, 111–126
Permeability, markers, 34
Phagocytosis
defense mechanism of lung against infection, 35
measurement, 43
respiratory infection and oxidants, 187
Photochemical oxidants. *See* Ozone
Pneumonitis, hypersensitivity
work environment organic dusts, 38, 39(table)
Pollutant gas dosimetry, 124–125
Pollutants
ambient air, 6
environmental
immunological markers of susceptibility, 33
safety standards, 22
Pollutants (cont.)
exposure, 111-126
inhalation—individual responsiveness, 203
oxides of nitrogen, 3
ozone, 3
Polymorphonuclear neutrophils (PMN), 33, 36
Predisposition
to disease, 3
Protein-calorie deficiencies
animal studies, 165-166
Pulmonary circulation, 115, 118
Pulmonary condition defects, 55
Pulmonary diffusion, 111-126
Pulmonary effects of nitrogen dioxide in asthmatics, 221(table)
Pulmonary fibrosis, 42
Pulmonary function
changes in asthmatic adolescents after inhaling sulfuric acid, 207, 210-212
ozone exposure, 75-88
Pulmonary immune system, 36
Pulmonary perfusion, 111-126
Pulmonary responses of asthmatics sulfur dioxide-induced bronchoconstriction, 196-197
Pulmonary sarcoidosis, 42
Pulmonary uptake during exercise, 119
Pulmonary ventilation perfusion ratio, 111-126

R
Radioisotope measurements, 120
Reactivity to ozone—laboratory study, 177
Reproducibility
of individual responses, 81
of oronasal switching point
Respiration during exercise, 112-115
Respiratory health
childhood factors related to adulthood, 141-147
Respiratory infections and oxidants, 182
in children, 141-147
relationship to chronic obstructive pulmonary disease, 174
susceptible population models, 141-147
Respiratory response—individual to ozone exposure, 75-76, 85
Respiratory symptoms, 195
Respiratory syncytial virus in early childhood, 142
Respiratory system
inhaled pollutants, 148
Respiratory tract
deposition of insoluble particles, 92
dosimetry of inhaled particles, 91-99
exercise and dosimetry, 91-99
infection may induce airway hyperreactivity, 39
particle dose, 95
susceptible individuals, 3
tracheobronchial and thoracic deposition curves, 93-94(figs), 95(table)
Respiratory virus challenge
defense mechanisms, 185-186
lung function review, 141-147
specific effects of oxidants, 186
Review—lung function, 141-147
Risk assessment, 43
Risk factor relationships—chronic respiratory illness
design of studies, 176(table)

S
Safety margin for air pollution, 7-20
Sarcoidosis
immunological control mechanisms impaired, 36, 37(table)
pulmonary—inhaled, 42
Selenium deficiency
enhanced toxicity of ozone, 163
rats more susceptible to hyperoxia, 163
Sensitivity to acid aerosols, 49
Sick building syndrome, 40
Smokers and nonsmokers aerosol bolus inhalation—lung studies, 135, 136(fig, table)
Smokers' lungs, 33, 35-37
Smokers' response to ozone exposure, 85
Smoking
relation to chronic obstructive pulmonary disease, 174
Smoking by children
relationship to rate of growth, 144-145
SOD. See Superoxide dismutase
Species sensitivity
to lung injury, 23-31
to oxidant gases, 27
Specific immune system, 33, 34
Spirometry, 180
Standards
air quality guidelines, World Health Organization, 9
ambient air pollutants, 6–20
EPA Clear Air Act of 1970
Co Criteria document
EPA-600/8-79-011, 9
EPA-600/8-83-033F, 10
EPA-450/5-84-004, 10
Federal Register:
44 FR 8207, (Oct. 1979), 9
45 FR 55066, (Aug. 18, 1980), 10
Lead Criteria documents
Federal Register:
43 FR 46246, (Oct. 5, 1978), 10
Ozone Criteria documents
EPA-600/8-84-020 (Aug. 1986), 14
36 FR 8186 (Apr. 30, 1971), 13
44 FR 8202 (Feb. 1979), 13
Particulate matter, Criteria Documents, NAAQS:
36 FR 8186 (Apr. 30, 1971), 15
49 FR 10408 (Mar. 20, 1984), 15
EPA-600/8-82-029 ('82), 15
EPA-450/5-82-007 ('82), 15
EPA-CASAC-87-101 (1986 addendum), 16
London mortality studies, 16
particle size indicators (Jan. 29, 1982 reaffirmed), 16
Standards development, 6–20
Statistical methods
individual variability, 78–79
Sulfur dioxide
See also Standards exposure
asthmatic subjects—selection for clinical studies, 59(table), 68
bronchoconstriction in asthmatics, 195, 197, 204
exercise and dosimetry, 91
responsiveness
variability in asthmatic population, 202–203, 207
Sulfuric acid effects
asthma, 68
exercise and dosimetry, 91
health effects in asthmatics, 207
Superoxide dismutase (SOD)
pulmonary activity in different species, 24(table)
Susceptibility
immunological markers, 32–46
overview, 3–6
Susceptible populations to air pollution age factors, 148–161
air pollution, 3–4, 6–20, 141
animals, 23–31
asthma, 55, 227
bronchoconstrictor effects, 52
children, 3
effects of indoor air pollutants, 40
effects of inhaled pollutants, 148, 225, 226(fig)
identification, 6, 56
immunological markers, 32–46
inhaled pollutants, 43
mechanisms, 41
responses, 6–19
standards, 6–19
T
Tachykinins
effect on airway smooth muscle, 50
Thoracic deposition of insoluble particles, 92–93, 94(fig)
Tissue injury in animals
caused by inhalation of particulates, 30
Tobacco smoke exposure in childhood, 146
Toxicology, susceptibility to inhaled pollutants, 148
Tracheobronchial tract
aerosol boluses—technique for diagnostic studies, 137
charting, 137
deposition of particles, 93–94(figs), 95(table)
particle charting of airways, 134
U
Upper respiratory tract
efficiency of particle removal during rest and exercise, 98
upper airway scrubbing, 101, 105
Uptake, See Absorption.
V
Variability
acute physiological response among individuals exposed to comparable inhaled doses of ozone, 76–83
Variability (cont.)
in individual response and susceptibility, 3–4, 76
methods for measurement of individual response, 77–78
ozone responsiveness, 82–86
Ventilation, alveolar, 118
Ventilation and blood flow, during exercise 113(table), 120
Ventilation distribution, nonuniformity, in asthmatics, 55
Ventilation factors
bolus technique, 137
exercise related, 106–108, 109(table)
exposure duration, 199
gas transport, 118, 124–125
patterns during exercise, 113(table)
Ventilation-perfusion ratio, absorption efficiency, 119, 120(fig)
Ventilation, pulmonary, 111–126
Viral respiratory infections
in lower levels of small airway function, 145
Vitamin B-6 deficiency
animal studies, 166
Vitamin C
in synthesis of collagen and elastin, 167
inhibits airway reactivity following exposure to nitrogen dioxide, 222
Vitamin E
deficiency enhanced toxicity of ozone, 163
ratio of polyunsaturated fatty acids, 169
Vulnerability
mechanism for predisposition to disease, 3

W

Wheezing. See Asthma, Bronchitis
World Health Organization—European Region air quality guidelines, 9