Subject Index

A

AASHTO standards, 202
Accelerometers, 360
Anisotropy index, 118
Artificial neural networks, 101
ASTM standards
 D 3441: 3
effective torsional shear test
development, 276
Attenuation, 73

B

Backfill, mine, 360
Bedding error, 288
Bender elements, 165
Blast damage, 360
Blasting sand, 202
Borehole installation, 134
Boundary effects, 346
Bulk stress, 202

C

Calibration chamber, 24
Centrifuge models, 360, 370, 400
dynamic, 346
Centrifuge testing, 330
dynamic, 305
dynamic modelling, 346
earthquake, 370
Rayleigh wave simulation, 385
Clays
 consolidation, 330
dependent shear, 330
frequency effects on, 191
material properties, 134
Compression, secondary, 330
Compression wave velocity, 24
Cone penetration tests
 D 3441: 3
Confining pressure, effective, 222
Confining stress, effective, 261
Constrained modulus, 24
Crosshole configuration, 58

Crosshole method, 234
Cyclic deviator stresses, 246
Cyclic simple shear, 165
Cyclic testing, 276
Cyclic torsional shear, 165
Cyclic triaxial tests
 loading, 288
 undrained, 246

D

Damping, 3, 73, 134, 288, 385
 ratio, 191, 222
Deformation properties, 246, 288
Deviator stresses, cyclic, 246
Dispersion curve, 88
Drop-ball arrangement, 385

E

Earthquake (See also Sesmic),
 134, 305
centrifuge modelling, 370
vibrations, 346, 360
Elastic deformation properties, 288

F

Formation factor, 118
Freestanding Torsional Shear
device, 134
Frequency effects, 191

G

Geophones, 88
 embedded, 24
Gravels, 261, 288

L

Laminar box, 370
Layer thickness, determining, 39
Liquefaction, 118, 370, 400
 gravelly soils, 261
 sand, 246

Copyright©1994 by ASTM International www.astm.org
Loading tests, 330
earthquake, 346
monotonic triaxial, 288
Load, repeated, 246
Louisiana Transportation Research Center, 202

M

Membrane compliance, 261
Mine backfill, 360
Modelling
accelerated, 360
centrifuge, 360, 370, 400
dynamic centrifuge, 346
Monotonic testing, 261, 276
Nongranular materials, 234

O

Ottawa sand, 222

P

Pavement materials, 234
Pavement subgrade, 24
Penetrometer, 73
Phase velocity, 73
Piezocone, seismic, 73
Piezoelectric wafers, 58
Pore pressure, 261
response, 191

R

Rayleigh waves, 39, 385
Ray paths, 101
Resilient modulus, 202, 234
Resonant column, 165, 191, 222, 234
Rock
crosshole SH-waves, 58
undrained testing, 261

S

Sands, 370
dynamic centrifuge tests, 346
Ottawa, 222
resilient modulus, 202
tailings, 360
Toyoura, 246
triaxial tests, 288
SASW testing, 39
Scaling laws, 330
Scholte wave, 39
Seismic cone, damping with, 3
Seismic mitigation, 385
Seismic piezocone, 73
Seismic tests, 3
Seismic travel time, 101
Seismic velocity, 58
Seismic vibrations
stability under, 360
Shear
box, 370
modulus, 24, 39, 118, 191, 222, 385
simple, 165
strength, 330
stresses, 346
torsional, 165
waves, 73
horizontally polarized, 58
velocity, 3, 24, 88
Solenoid source, 58
Spectral analysis, 88
Spectral-Analysis-of-Surface-Waves, 39
Spectral ratio, 73
Standards
dynamic centrifuge
modelling, 400
Guide for Design of Pavement Structures, 202
Stiffness measurements, 24, 39
Stiffness values, 288
Strain gage, 288, 346
Strain level, 3, 134
Strain rate, 330
Stress conditions, 276
Stress, effective, 261
Stress, shear, 346
Stress ratio, 118
Surface waves, 88
<table>
<thead>
<tr>
<th>T</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomography, 101</td>
<td>VELACS Project, 400</td>
</tr>
<tr>
<td>Torsional shear, 165, 191, 234, 276</td>
<td>Volumetric compliance, 261</td>
</tr>
<tr>
<td>freestanding, 134</td>
<td></td>
</tr>
<tr>
<td>Toyoura sand, 246</td>
<td></td>
</tr>
<tr>
<td>Transducers, 276</td>
<td></td>
</tr>
<tr>
<td>dynamic stress, 360</td>
<td></td>
</tr>
<tr>
<td>Triaxial tests, 330</td>
<td></td>
</tr>
<tr>
<td>compression, 288</td>
<td></td>
</tr>
<tr>
<td>cyclic loading, 288</td>
<td></td>
</tr>
<tr>
<td>cyclic undrained, 246</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Undrained testing</td>
<td>Wave propagation, 370, 385</td>
</tr>
<tr>
<td>cyclic triaxial, 246, 261</td>
<td>tests, 165</td>
</tr>
<tr>
<td>monotonic, 261</td>
<td>Wave velocity</td>
</tr>
<tr>
<td></td>
<td>compression, 24</td>
</tr>
<tr>
<td></td>
<td>shear, 3, 24</td>
</tr>
</tbody>
</table>