Subject Index

A

Abrasion, liner, 177
Acetabular components, 177
cups, 60, 199
cups, cementless, 21
ASTM standards, 177

B

Ball/stem interface, 127
Bone support test, partial, 137
Bore and cone interface, 189
Burnishing, 177
Burst strength, 127

C

Cantilever test, 137
Ceramic femoral head, 69
Chromium, 45
Chromium orthophosphate, 33
Cobalt, 45, 104
Cobalt-chrome alloy, 33, 60, 104, 127, 146, 157
Cobalt chromium molybdenum alloy, 45, 146, 189, 211
Compressive stress, 94
Corrosion, 4, 45
bore and cone interface, 189
crevi ce, 211
electrochemical changes, 157
femoral head and neck taper interface, 104
fretting, 146, 211
Morse taper, 114
product characterization, 33

D

Deformation, 85, 127
Diameter/shell inside diameter, 60
Disassembly force, Morse taper, 114
Displacement vs. load information, 94
Distraction resistance, 199

E

Energy dispersive X-ray analysis, 33

F

Fatigue characteristics, 226
Fatigue integrity test, 137
Fatigue loading, 104, 199
Fatigue stem testing, 226
Fatigue testing, 211
Fatigue, torsional, 177
Femoral component, 114, 137
Femoral heads, 69
modular, 33
Femoral stem fatigue, 226
Fibroblast, 21
Fourier transform infrared spectroscopy, 33
Fretting, 33, 157
bore and cone interface, 189
corrosion fatigue, 146
corrosion, implant interface, 211
intercomponent, 226
modular connection, 137
taper, crevice, 45

G

Glenoid prosthesis, 5

Head-neck taper interface, 104
Head-stem combination, 5
Head-taper joints, 146
Hip joint head, 127
Hip joint replacement, 127
MODULARITY OF ORTHOPEDIC IMPLANTS

Hip replacement, 33, 45, 211, 226
acetabular cups, 21, 60
ceramic femoral head marking, 69
corrosion testing, 157
fatigue loading, 199
fretting corrosion, 189
interface fretting assessment, 104
load bearing capacity, 127
modular joint corrosion, 146
Morse taper function, 114
torsional fatigue, acetabular components, 177
Humeral prosthesis, 5
Hybridization, 21

I

Immunohistochemistry, 21
Impaction force, Morse taper, 114
International Organization for Standardization (ISO), 177

K

Knee systems, 85, 94, 137

L

Laser beam engraving, 69
Liner lock mechanism, 60, 177
Liner micromotion, 177
Liner/shell distraction resistance, 199
Load bearing capability, 127
Loading conditions, 226
Loading, 226
Loading, fatigue, 85, 94
Load magnitude effects, 157
Load resistance, static, 127
Locking mechanism, 94
Locking strength, 85, 94
Loosening, aseptic, 21, 60

M

Machining, mechanical, 69
Marking, ceramic femoral head, 69

Modular junctions, 33
Morse taper, 104
assessment, 114

N

Neck extension, 189
Neck taper, 104

O

Open circuit potential, 157
Osteolysis, 21, 33, 60
Oxide film, 157
fracture, 45

P

Particulate debris, 33
Physiologic loading, 85
Polyethylene, 60, 177
insert failure, 5
liner, 199
wear, 21, 33

R

Ringer's solution, 104, 146

S

Shear load, 85
Shear stress, 94
Shoulder arthroplasty, 5
Stability, modular connection, 94
Stem extension test, 137
Stress concentrations, 69
Structural fatigue strength, 226
Surface abrasion, 60
Surface morphology, 146

T

Taper assessment, 104, 114, 146, 157
corrosion, 5
distraction strength, 114
fit, 211
fretting crevice corrosion, 45
interface, 104
surface structure, metal, 127
Tibial components, 85, 94
Tibial stem extension, 137
Titanium alloys, 33, 104, 157
 heads, 45
 stems, 45, 189, 211
 tapers, 127, 146
Torsional fatigue, 177

W
Wear, 33, 177

Wear debris, modular hip
 implants, 114

X
X-ray diffraction analysis, 33

Z
Zirconia ceramic femoral head,
 146