Subject Index

A

- Air cooling-induction heating, 370
- Alloy 718, 411
- Aluminum, 562
- Aluminum plate alloy, 309
- American Iron and Steel Institute, AISI304, 105
- American Society of Mechanical Engineers, 263
- ASTM standards, 214
 - A 515, Grade B, 243
 - A 533, Grade B, 485
 - E 399, 146, 263
 - E 740, 146
 - E 813, 469
 - E 1152, 469
 - E 1290, 469
- Automotive design, 327

B

- Bending, 146, 214, 243, 515
- Bending test program, 146
- British Standards Institute 7448, 469
- Burst test, 535

C

- Cladding, 515
- Cleavage, 179, 296
 - precleavage tearing, 485
- Coarse grain heat affected zone, 427
- Composites
 - fiber reinforced metal laminates, 123
 - glass woven fabric, 55
 - overwrap for pressure vessel, 86
 - polymer matrix composite laminates, 123

D

- Constraint, 243, 485, 535
 - effects, 179, 214
 - in-plane, 296
 - model, 198
 - plastic, 671
- Crack arrest toughness, 617
- Crack closure, 3, 411
- Crack, continuous
 - circumferential, 642
- Crack, corner, 656
- Crack, fatigue, 397
- Crack front tunnelling, 535, 617
- Crack growth, 3
 - fatigue, 411
 - model, 123
 - rates, 602
 - resistance, 535
 - safe-life analysis, 86
 - stable, 146, 167, 309, 577
 - unstable, 577
- Cracking tests, hydrogen-induced, 602
- Crack opening, critical, 123
- Crack propagation, 411, 562, 617
 - stable, 55
- Crack, shallow, 485
- Crack size, initial, 355
- Crack, surface, 146, 214, 243, 656
- Crack tip opening angle, 309
- Crack tip opening displacement, 296, 309, 427, 450, 469
- Crack tip stress fields, 214
- Crack tip stress triaxiality, 485
- Crack velocity, 617
- Creep, 70
- Cylinders, circumferential cracks, 641

D

- Damage accumulation, time-dependent, 70
- Damage, fatigue, 105
- Damage growth, 123
- Damage, impact, 86
- Damage mechanisms, 370
Damage model
continuum, 485
cumulative, 397
Damage tolerance analysis, 656
Damage tolerance design, 3
Deformation, 535
cyclic microstructural, 105
Delamination, 55
Dissipation approach, 535
Ductile fracture, 562
Ductile tearing, 485
Ductile-to-brittle transition, 179, 243
Ductility, 167
Durability, ground vehicle, 327

E
Elasticity, 3
Electric Power Research Institute, 263
Embrittlement, 427, 515

F
Failure prediction, 562
Fatigue analysis, 397
Fatigue, high cycle, 342
Fatigue intensity factor, 355
Fatigue life prediction, 327
Fiber surface treatments, 55
Finite element analysis, 3, 296, 411
elastic-plastic, 515
physical shape modeling, 562
residual stress effects, 499
rubber toughened polymer blends, 671
three-dimensional, 243, 309
Finite elements, 179, 641
Flaw analysis, pressure vessel steels, 515

H
Heat affected zone, 427
Heat transfer, 370
HSLA, 469
HSLA 100, 450
Hydrogen-induced cracking tests, 602

I
Impact damage, 86
Inference equations, 469

J
J_{IC}, 167
J-integral, 3, 243, 469, 499
Joint efficiency, 450
J-Q theory, 296, 485
J-R curve, 535

K
K_{IC}, 198, 263
K_{JC}, 198, 263, 280

L
Leak-before-burst failure mode, 86
Liners, metallic, 86
Loading, 214, 296, 355, 535
applied, 123
bending, 146, 214, 243, 515
conditions, 656
cubic, 641
cyclic, 105
elastic-plastic, 411
fatigue, 55
field service, 342
spectra, 342
static, 55
tensile, 146
tension, 243
thermomechanical, 370
Local brittle zone, 427
Low cycle fatigue, 370, 397

M
Magnification factors, 641
Maintenance, high temperature equipment, 70
Martensite-austenite constituent, 427
Master curve, 263, 280
Material improvement, ground vehicle, 327
Microstructural deformation, 105
Microvoid nucleation, 167
Models and modeling, 55
 characteristic distance, 167
 cleavage fracture, 296
 crack growth, 123
 cumulative damage, 397
 physical shape, 562
 scaling, 179
 thermal, 499
 three-dimensional constraint effects, 179

N
Nickel-iron base alloys, 602
Nondestructive evaluation techniques, 86
Nonisothermal testing, 370
Numerical analysis, 469

O
Order statistics, 198, 280

P
Palmgren-Miner rule, 397
Paris law, 411
Performance optimization, ground vehicle, 327
Piping fracture assessment, 499
Plane strain core analysis, 309
Plasticity, 3
Plastic strain, 167
Plate, crack stress intensity factors, 656
Polymer blends, 671
Polymethylmethacrylate, 577
Power plant gas turbines, 70
Pressure oscillation, 397
Pressure tubes, 535
Pressure vessels, 397, 499
 metallic, 86
 reactor, 485
 steel, 105, 263, 515

R
Railway bogie components, 342
Reliability, ground vehicle, 327
Residual stress, 397, 499, 515
Rubber cavitation, 671

S
SA508, 105
Service behavior, 70, 342
Service load fatigue testing, 342
Shear lead yielding, 671
Silicon nitride, 577
S-N curve, 355
Space system pressure vessels, 86
Stability analyses, 577
Standards
 AISI304, 105
 BSI 7448, 469
 military, 86
Steels, 280
 ASTM A 533 Grade B, 485
 ASTM A 515 Grade B, 243
 ferritic, 179, 198
 high strength, 602
 HSLA, 469
 HSLA 100, 450
 low carbon, 167
 plates, 427, 450, 617
 pressure vessel, 105, 263, 515
 SA508, 105
 structural alloy, 427
Strain ageing embrittlement, 515
Strain control, 411
Strength, residual, 123
Stress analysis, 370
Stress, applied, 411, 617
Stress concentration, 656
Stress corrosion cracking resistance, 427
Stress criterion, local fracture, 617
Stress, hoop, 397
Stress, hydrostatic, 671
Stress intensity factor, 3, 214, 411
 comparison with fracture toughness, 146
 cylinders, 641
 determining, 656
 pressure vessel steels, 515
 steel plate, 617
Stress intensity field, 577
Stress intensity threshold, 355, 602
Stress range, 355
Stress, residual, 397, 499, 515
Structural alloy steel plate, 427

T

Tearing
precleavage, 485
stable, 309, 562

Tensile strength, 450
Tensile/yield strength, 123
Tension test program, 146
Thermal stress analysis, 370
Thermomechanical fatigue, 370
Time-dependent fatigue, 370
Toughness, 55, 243, 263
brittle materials, 577
fracture, 671
inference equations, 469
pressure vessels, 198, 263
pre-strain influence on, 167
scatter, 296
specimens with surface cracks, 146
transition region, 280
values, 55
Transition, ductile-to-brittle, 179, 243
Transition region, 263, 280, 296
Transition temperature, 198
Tungsten, 577
Turbines, 70, 370

W

Weibull statistics method, 263
Weibull stress, 179
Weight function method, 656
Weight reduction, structural, 327
Welded structures, 342
Welding simulation, 499
Weld material fracture assessment, 485
Weld metal, 450
Weldments, 427

X

X-ray diffraction, 105
X-ray double crystal diffractometry, 105

Y

Yield level approximation, 499
Yield strength, 123, 167, 450, 602

Z

Zirconium/niobium pressure tubes, 535