Subject Index

A
Air phase, 109, 157
Alidrain drain, 652, 655, 658–659
 compression versus time, 656–657
 equivalent diameters, 660
 repeatability, 661
 technical specifications, 653
Andreasen method, 491
Anteus apparatus, 119, 694, 697
 Leda clay, 702–704, 706
Anteus back-pressure consolidometer, 109
Anteus consolidometer, 437
Anteus oedometers, modified, 158
As-compacted prestress, 111, 184, 191–193
 determination, 188–191
 effect of water content, 191–193
 equation, 193
ASTM D 653: 86, 88
ASTM D 698: 186
ASTM D 1557: 186
ASTM D 2435: 11, 87, 241, 244, 651, 654, 713–714
Atterberg limits, profiles, 611–613
Automated system, 217
Automation, 112
 adaptability of constant rate of strain consolidation test, 174
B
Bäckebo clay, stress-strain curves, 311
Backpressure
cell, 283–284
 consolidometer, 109
specimen saturation, 45–46
Band-shaped prefabricated drains, 642–661
 compression versus time
 Alidrain wicks, 655–656
 consolidation test with no wick, 655
 wick drain testing program, 655, 657
 consolidation, 648–650
 drains, 651–653
 equivalent diameters, 648, 660
 loosely fitted filter jacket, 659
 rate of consolidation, no wick test, 654
 repeatability, 659, 661
 results, 654–658
 settlement, 657, 661
 soil, 650–651
 technical specifications, 653
 testing sequence, 652
 water release, 656–659, 661
 wick drain consolidometer (see Wick drain consolidometer)
Batiscan clay
 creep and oedometer tests, 387
 rheological behavior, 381
 rheological model, 383
 simulated MSL test, 396
 soil parameters, 384
 strain rate-strain relations, 390–391
 strain rate-time relations, 388–389
 stress-strain relations, 390–391
Bemben method, maximum past pressure, 622–624
Bentonite-sand mixtures, 627–640

727
Bentonite-sand mixtures (continued)
classification diagram, 636
compression index, 639-640
consolidometer, 630
effect of salt infiltration, 636-638,
640
four-phase soil model, 629-630
fundamentals of study, 628-629
physical properties of specimens, 631
procedure and materials, 629-631
relationships between clay content and
dry density, 635-636
specimen description, 632
structural model, 628
threshold nonclay void ratio, 634-
635
void ratio and effective pressure re-
lationships, 631, 633-636
Bessel’s function, successive roots, 28-
29
Biaxial consolidation test, 476-477
anisotropic properties, measurement,
465-467
anisotropic soils, 465-484
average consolidation, 472
comparison of permeabilities, 481
elastic constant determination, 473,
476
normalized flow through specimen
device, 469
procedure, 469
results, 478-480
stiffness constants, 470, 479
test device, 468
test equipment, 468-469
tests on pepper shale, 480-484
theoretical behavior, 469-473
theoretical consolidation curves, 473
theoretical relationship for V, versus
V, during consolidation, 474-
475
Biaxial consolidometer test, 120
Biot’s coupled consolidation theory, 583
Bjerrum’s model, 287
Bjerrum’s procedure, 435
Boston Blue Clay, consolidation, 91
Boundary conditions, 471
Bounding surface, 593, 599, 608
invariant stress space, 600
parameters, 602
Bourdon pressure gage, 221
Breakpoint method, maximum past
pressure, 620-622
Brittle behavior, 610-625
breaking of cement bonds, 615
correlation to field undrained shear
strength, 624
log plot construction, 615, 617
one-dimensional test curves, 613-618
See also Vertical stress
BS 1377, 209
Bulk modulus, 588

C

Cam Clay
elastic component of strain, 382
models, 118
modified, 583, 585
Canadian clays, preconsolidation pres-
sure, 310
Cardboard strip-type drain, 644
Casagrande construction, 222-223
Casagrande logarithm, 194
Casagrande’s fitting method, 529
Casagrande’s logarithm of time fitting
method, 225-226
Casagrande’s log t method, 127
Casagrande’s method, 613, 625
maximum past pressure, 618
replacement by curve rule method,
543-545
Castleboard drain, 652, 660
technical specifications, 653
water release, 658
Castor oil, 490
density-temperature characteristics, 495
viscosity-temperature relationship, 494
Cementation, post-depositional, 611, 625
Cemented soil, 129–130

disturbance, 55
Centrifuge
curved vertical stress distribution, 590
effect of friction and adhesion, 590
limitations, 589–591
radial acceleration field, 589
University of California at Davis, 570–571
See also Selfweight consolidation test
Centrifuge model, 125, 548, 593–608
bounding surface in invariant stress space, 600
bounding surface plasticity theory, 599
comparison with numerical model, 124–126
effective stress distribution, 598
finite-element analysis, 604–607
incrementalization of rate equations, 602
instrumentation and data acquisition, 596
isotropic consolidation results, 601
model package, 594–595, 597
pore pressure
dissipation during initialization, 604
response to loading and unloading, 605
results and comparison, 603–607
settlement during loading and unloading, 606
specimen preparation, 594–596
surface settlement during initialization, 603
testing program, 596–598
testing sequence, 597
undrained stress paths under triaxial conditions, 600–601
Centrifuge test, 125–126, 716

advantages, 568
soft clay deformation (see Time-dependent numerical model, soft clay deformation)
Champlain clay, 119, 719–720
preconsolidation pressure, 722
variation of α2 coefficient with strain rate, 722
Champlain Sea clay (see Leda clay)
CHG test (see Controlled-hydraulic gradient test)
Clay, 684
behavior and consolidation, 379–383
bulk density determination using gamma radiation, 123–124
characteristics, presenting strain rate effects, 720
consolidation strain, 85
content and dry density, 635–636
deposit, consolidation under load, 73
geological history and compressibility, 74–75
highly structured, preconsolidation pressure, 81
k-line, 347–348
medium-to-stiff, trimming, 333
model specimen, 550
overconsolidation, 75–76
physical properties, 554
preconsolidation pressure, 309
remolded, 82
rheological behavior, 380
sensitive, 118
skeleton, deformation behavior, 118
soft plastic, constant-rate-of-strain test, 343
stiff, incremental loading oedometer test, 334
strain rate, 719
See also specific clays
Clayey gyttja, properties, 311
Clayey soil, 684, 717
classification diagram, 636
Clay-kaolinite mixture, coefficient of consolidation, determination, 539–540
Clay shale, 465
Clay suspension concentration profile, 490–498
caster oil
density-temperature characteristics, 495
viscosity-temperature relationship, 494
concentration profiles with time, 497
destructive testing, 491
materials and experimental procedures, 492–495
non-destructive testing, 491
results, 496–498
sampling apparatus, 493
specific surface area of sediment specimens, 498
velocity of droplet and clay concentration, 495–496
Coefficient of compressibility, nonlinear, 139
air phase, 157
brittle behavior, 617
calculated values, 27
computation, 126–127
constant
assumption, 419, 424–430
finite strain on, 532–534
constant rate of deformation tests, 48
continuous loading tests, 51–52
corrected starting point, 13
alternative methods, 15–17
comparison of square root and logarithmic methods, 14
correction by primary consolidation ratio, 126
CRS test, 619
curve fitting, 12–18
determination, 526–546
clay-kaolinite mixture, 539–540
correction by primary consolidation ratio, 530–531
curve rule method, 528–530
graphic analysis of time-compression curve, 546
from intercept with primary compression curve, 272
peat, 539, 541
research, 543
routine, 543–544
settlement-time factors, relations, 533, 535
from time factor, 328
variable, 526
effect of decomposition, 133
effect of disturbance, 56
field and laboratory results, 61
function of modulus and permeability, 320
function of permeability, 303, 306
functions of modulus, 303, 306
heat-accelerated test, 292
histograms, one-dimensional tests, 466–467
horizontal flow, 646, 668–670
incremental compressibility test, 290
incremental loading oedometer test, 336
versus log effective stress plots, 245, 250–251
oedometer test, 346–349
plasticity index and, 430
selfweight consolidation test, 562, 564–565
soil with occluded air bubbles, 45
standard methods, 12–15
time factor for consolidation of finite strain, 534
variable, 526
finite strain and, 534–543
variable strain and examples, 539–543
final consolidation ratio, 536
time-consolidation relation, 535–539
variation with σ', 290–292
Coefficient of lateral earth pressure, 704–705, 707
Coefficient of permeability, 118, 168, 351
continuous test, 348
heat-accelerated test, 292
incremental compressibility test, 290
incremental loading oedometer test, 337
incremental loading test, 347–348
variation with σ', 290–291
Coefficient of secondary compression, 690
and compression index, 692
effect of disturbance, 57
Coefficient of secondary consolidation as percentage of primary consolidation, 91
relationship to consolidation pressure, 91
relationship to rate, 96
Cohesive soils, 405
Combwich mud, 209
Compacted fills
as-compacted prestress, 191–193
water content relationships, 191
compressibility, 186–197
confining pressure effect, 195
experimental apparatus and procedure, 186–188
saturated prestress, 194, 196–197
settlement, 197–201
volume change, 194–196
Compaction energy, 111, 189
versus plastic deformation, 190
Compaction prestress, 111
Compressibility, 139–140, 299, 466, 627
as-compacted, 187–188
compacted fills (see Compacted fills)
continuity and, 139
curve, 287–288
conventional and CRS tests, 720
law, 378
Mexico City clay, 258
moduli, 109–110
parameters, 287–289
relationships, unsaturated soil, 156
selfweight consolidation test, 559–562
unsaturated soil, 160, 162–163
variation, 107
Compression, 642
behavior, 129–131
demarcation between rebound and virgin segments, 129
industrial sludge, 130
influence of coarse fraction, 130
inorganic and organic soils, 133
kaolin, 709
calculations, 9–11
comparison of field and theory, 59–60
curve, 425, 610
Leda clay, 698, 701
line, virgin, 117
resistance of soil structure, 99
secondary
following primary consolidation, 32–33
influence on subsequent time-settlement response, 34–35
influence on subsequent void ratios, 33–34
settlement versus log of time, 33
strain, 408
Compression index, 86, 245, 252
bentonite-sand mixtures, 639–640
coefficient of secondary compression and, 692
constant assumption, 419, 424–430
virgin, natural water content relation, 624
CONSOLIDATION OF SOILS: TESTING AND EVALUATION

CON2D, 125–126, 567, 568, 583, 585, 586–588, 591
overprediction of immediate deformation, 587–588
CONMULT, 297
CONMULT model, 118, 390, 398
Consolidation
average, 472
behavior, 119, 610
cell, 116
characteristics variation, 77
clay behavior, 379–383
coefficient, radial, 29
curves, 148–150
finite difference equation, 407
governing equations, 469–470
law, 354
seepage-induced, 503
self-weight consolidation testing, 501–503
Terzaghi’s coefficient, 140–141
coefficient, 145–146, 151
time rate, 663
effects of disturbance, 57
See also Primary consolidation; Secondary consolidation
Consolidation line, virgin, 455–456, 458
isotropic, 569
Consolidation parameters, 279, 548
constant rate of strain test, 312
continuous loading tests, 325
Consolidation pressure
effect of nonclay content, 630
void ratio relations, 631, 633–636
Consolidation ratio
at bottom of specimen, 415
at top of specimen, 414
versus secondary consolidation rate, 90
Consolidation strain, clay layer, 85
Consolidation tests, 7–63
antisotropically prepared specimens, 453
associated techniques, 715–716
boundary impedance, 19–21
case histories, 58–59
coefficient of consolidation (see Coefficient of consolidation)
comparative study, 694–710
Anteus apparatus, 697
comparison of test results, 706
kaolin clay, 705–709
Leda clay, test results, 698–705
oedometer, 696
Rowe cell, 697
triaxial cell, 697–698
comparison of field observations and laboratory results, 58–61, 91–98
coefficient of consolidation, 61
compressions, 59–60
long-term observations, 95
Nottaway, Broadback, and Rupert River region, 93
pressure/void curve, Olga clay, 93–94
secondary consolidation effects, 92
settlement, 59–60
embankments, 92
rate, 94–95
stress-strain, 59–60
consolidometer, 453–454
constant rate of deformation tests, 47–49, 117
constant rate of strain, 79
defined, 7
different methods of data scrutiny, 717
disturbance, 54–57
cemented soils, 55
consolidation time rates, 57
effect on coefficient of consolidation, 56
effect on coefficient of secondary compression, 57
effect on reduction in void ratio, 54–55
thin-walled, fixed piston sampler, 55
eyear history, 8
effective vertical stress-void ratio behavior, 455-459
fibrous peat, 485-489
incremental loading, 78
instrumentation, 454
isotropically prepared specimens, 452-453
large diameter (see Large diameter consolidation tests)
materials, 452
method influence, 77-78, 115
on time-deformation curves, 87-88
methods, 83
microcomputer (see Microcomputer applications)
modified, 116
new equipment, 715-716
normalized pressure-void ratio relationships, 460-462
partial saturation, 41-46, 63
backpressure, specimen saturation, 45-46
Henry's law, 42-43
interconnected air voids, 41-42
occluded air bubbles, 42-45
volumetric strain, 41
pore water pressure, 459-460
dissipation rates, 23-24
problems and issues, 718
rapid loading, 18-19
ring friction, 21-23
sample size, 62
sample size effects, 52-54
standard technique, 714
one-dimensional vertical-flow tests, 11-12
storage effects, 58
stress-strain (see Stress-strain relationship)
stress surface, 18
temperature effects, 23
testing procedure, 455
time-compression curves, 89
time rate estimation, 10
time-settlement curve
influence of drainage distance, 53
method, 62
T-U relationship, 18
variables used in one-dimensional analyses, 8-11
See also Kaolin; Leda clay; specific tests
Consolidometer, 437, 453-454
bentonite-sand mixtures, 630
Rowe type, 120
slurry, 503-504
wick drain, 132, 642, 651-652, 654, 666
Constant gradient test, 321-322
strain rate, 326
Constant-head permeability tests, 337-338
Constant rate consolidation test, 565
Constant rate of deformation tests, 47-49
automatic, 117
Constant-rate-of-loading consolidation test, 49, 112-113, 236-256
analysis, 237-239
apparatus, 239-241
development, 236-237
average pore pressure ratio, 252-253
average time, 252
coefficient of consolidation versus log effective stress plots, 245, 250-251
comparison of range of results, 253-254
completion time, 255
compression index, 245, 252
cross section of specimen container, 241
loading rate
versus liquid limit, 256
selection, 255
microcomputer applications, 242
procedure, 242, 244
rebound index, 245, 252
soil description, 241-243
Constant-rate-of-loading consolidation test (continued)
test conditions, 245
time consolidation curves, 245–249
Constant-rate-of-strain test, 79, 110,
119, 170–183, 203, 236, 299–
327, 338–341, 610, 625
adaptability to automation, 174
apparatus, 174–175, 300–301, 338–
340
assumed stress distribution, 308
coefficient of consolidation, 320
comparison with
controlled-hydraulic gradient tests,
442–446
conventional incremental tests,
320–323, 442–446
real field behavior, 320–323
compressibility curves, 720
constant modulus M'_c, 313–314
data acquisition and regulation sys­
tem, 174, 340–341
development, 435
disadvantages, 170–171
history, 170
interpretation, 306
limiting pressure, 315–316
microcomputer applications, 340–
341
modulus number M', 314–315
parameter a, 314–316
permeability (see Permeability)
preconsolidation pressure (see Pre­
consolidation pressure)
procedure, 174, 176–177, 301–302
loading, 341
results, 181, 302–305, 342–344
soft plastic clay, 343
sources of error, 307–309
specimen trimming process, 174,
176
strain rate, 326
selection criteria, 171–174
stress-strain curves, 311, 400
Constitutive model, 568, 583
Continuous loading test, 46–52, 63, 79–
80, 82, 203, 322–326, 329
coefficient of consolidation, 51–52
coefficients, 50
consolidation parameters, 325
correlation with constant rate of strain
test, 325
general case, 49–50
maximum previous consolidation
pressure, 50–51
property measurement, 50
rate-dependent parameters, 324–325
solutions, 49
See also specific tests
Controlled gradient test, 79, 203, 297,
396–398, 433, 694, 707
Leda clay, 703, 705
Controlled-hydraulic gradient test, 433
comparison with incremental loading
and CRS tests, 442–446
development, 435–436
results, 441–442
soft clays, 437–438
Controlled rate of strain tests, 297
Controlled strain rate, 433
Conventional-incremental-loading test, 236
apparatus, 241, 243
correlation of range of results, 253–
254
correlation with constant rate of strain
test, 320–323
preconsolidation pressure, correla­
tion with constant rate of strain
test, 310
procedure, 244
Cordemais clay, permeability, 361, 364
Cour inflection point method, 226–227
Creep, 297, 465
Singh-Mitchell parameters, 569
Creep law, 119
Creep test, 116
Batiscan clay, 387–389
long term, 296–297
natural clays, 387–392
strain rate-time relations, Batiscan clay, 388–389
ultrasonic method, 521–524
Crimp tests, 673–675, 679
Critical gradient, influence on consolidation of clays, 354–376
degree of consolidation, 371–372
equipment, 355–356
interpretation of tests, 369–370, 375
pore pressure evolution, 367, 369
test principle, 355, 357–358
See also Permeability law; Saint-Herblain clay
Critical stress, 258–261
CRS test (see Constant rate of strain test)
Cumberland River silty clay, constant-rate-of strain consolidation, 178–180
Curing, specimen conditions before and after, 562
Curve fitting, 526, 528–530
clay, 541
clay-kaolinite mixture, 540
remolded peat, 541–542
See also specific methods
Curve rule method, 126, 526, 528–530
replacement of Casagrande’s method, 543–545
D
Darcy’s law, 354, 551
Dashpot, 39–40
Decomposition, 133
Deformation
Casagrande construction, 223
condition, 408
effect on modulus M_L, 314
permeability parameters, 318
preconsolidation pressure, 312
stress, 316
false, correction for, incremental loading test, 336
natural, 152
rate, 47–48
soft clay (see Time-dependent numerical model, soft clay deformation)
Degree of consolidation, 131, 153, 366
average, 18, 20, 26–27, 238, 265, 647
effect of boundary impedance, 20
equal strain inflow and outflow, 29
free strain inflow and outflow, 28–29
radical flow consolidation testing, 28–29
secondary effects, 36
dependence on ratio of final to initial thickness, 109
influence of critical gradient, 371–372
influence of length of drainage path, 373
sludge, 512
time relations, 688
versus time for Drammen clay, 39
Desol wick drains, 681–683
Differential equation, 471
Dilatability, sand, 520–521
Drammen clay
degree of secondary consolidation versus time, 39
time-settlement curve, secondary consolidation, 38
Dundas soil, 451
effective vertical stress-void ratio relationship, 457
physical properties, 452
E
Elastic constants, 465
determination, 473, 476
Electrolyte solution, 627
Embankment, 567
deformation due to overburden stresses, 198
pressure, 198
section, 198
settlement, 197–201, 262
and piezometric levels, 92
unit weight, 200
vertical stress exceeding preconsolidation stress, 97
EngCon, Desk Top Computer Analysis of Consolidation Data, 222
Engineering index properties, lacustrine clay deposit, 186
Experimental methods and techniques, 122–128, 715–716
bulk density determination by gamma radiation, 123
centrifuge and numerical modeling comparisons, 124–126
oedometer tests, 714–715
solids content determination, 122–123
ultrasonic device, 124
Extended consolidation theory, 406

F
f-log σ', 418–419, 423–427
Fall-drop technique, clay suspension concentration profile (see Clay suspension concentration profile)
FEADAM, 585
FEM, 583, 585
Finite-difference model, grid system, 386
Finite-element analysis, 125, 593, 604–605
grid, 607
solution steps, 607
See also FEM
Finite strain
consolidation program, 126
consolidation theory, 500, 503
constant coefficient of consolidation, 532–534
variable coefficient of consolidation, 534–543
Floating ring consolidometer, 239–240
Franki-Kjellman drain, 652, 656
technical specifications, 653

G
Gamma radiation, bulk density of clay, determination, 123–124
Gas formation, 113
Gault clay, consolidation characteristics, 77
Geocomposites, 642
Geodrain drain, 652, 658, 660
technical specifications, 653
Geomechanics, 593
Geotextiles, 663–664
Gloucester clay, preconsolidation pressure-strain rate relationship, 447–448
Graphic method, 225–226

H
Heat-accelerated test, 117, 291–293
equipment, 292
interpretation, 293
principle, 291
procedure, 293
saturation, 292–293
Henry's law, 42–43
High-air-entry ceramic disk, 158, 168
Highly compressible soils, inter-granular viscosity, 257–280
fitting methods, 268, 271–276
curves Type I, 268, 271–272
curves Type II, 272–279
theoretical considerations, 263–268
clay structure, 263
consolidation curves, 268–269
Kelvin unit, 264–266
rheological model, 264
Terzaghi's primary time factor, 267
volumetric strain, 264
Z-unit, 266–268
See also Mexico City clay; Oedometer test
Historical developments, 74–77
Bjerrum’s interpretation, 73–76
Terzaghi, 72
young and aged clays, 73–74
Honmoku clay, 418–419
selfweight consolidation process, 425
Hvorslev’s constants, 637
Hydraulic conductivity
comparison of measured and computed values, 15
smear zone, 30
Hydraulic consolidation cell, 53
Hyperbolic elastic model, 521

Illicon computer program, 94
Impact-type compaction test, 189
Incremental compressibility test
compressibility parameters, 287–289
equipment, 285–286
increment duration, 287
loading law, 286
procedure, 286–287
remolding criterion, 289
saturation, 286
settlement versus time, 289–290
σ′, variation of coefficients of consolidation and permeability, 290–292
Taylor’s method, 290
unloading-reloading cycle, 288
Incremental loading oedometer test, 99, 334–338
apparatus, 334–335
coefficient of consolidation, 336
coefficient of permeability, 337
constant-head permeability tests, 337–338
correction for false deformation, 336
loading procedure, 334–336
results, 342
soft clays, test results, 438–439
stiff clay, 334
time-compression curve, 337
Incremental loading test, 78, 117, 433–434, 610, 615
comparison with CRS and CHG tests, 442–446
compression-log pressure curves, 81
determination of rate of consolidation parameters, 614–616
soft clays, 436–437
stress-strain curve, 435
vertical stress and strain, 615
Inflection point method, 226
Initial conditions, 471
Interconnected air voids, 41–42
Intergranular viscosity (see Secondary consolidation)
Ishii’s consolidation method, 545
Isochrones, 378
Isotropic compression tests, 124

Japan Industrial Standard code, 531–532
Japan Society of Soil Mechanics and Foundation Engineering, 531–532
Joliette clay, MSL tests, 395

Kaolin, 154, 451, 594, 642, 694
band-shaped prefabricated drains, 650–651
centrifuge tests, 569
classification properties, 569
compacted, 109
compression behavior, 709
consolidation testing results, 705–709
effective vertical stress-void ratio relationship, 455–457, 459
Kaolin (continued)
 - geotechnical properties, 452, 696
 - material properties, 570
 - permeability tests, 477
 - stiffness constant, 479
 - testing program summary, 708
 - time-versus pressure ratio, 459
 - \(V_o \) versus \(V_r \), 478–480

See also Unsaturated soil

Kaolinite Flat D, index properties, 492

Karol-Warner dual range consolidometer, 218–219

Karol-Warner fixed ring oedometer, 187–188

Kavazanjian, Mitchell, and Bonaparte, 125

Kelvin unit, 264–266

- \(k \)-line method, 346–349
 - continuous tests, 348
 - incremental tests, 347–349
 - tangent modulus, 348–349
- \(K_0 \)-triaxial test, 119

L

Laboratoires des Ponts et Chaussées, 282

Laboratory tests, 107–114
 - equipment, 282
 - summary of papers, 108

Lacustrine clay deposit
 - dry unit weight versus moisture content curves, 187
 - index properties, 186

See also Compacted fills

Landfill, model, initial state, 431

Large diameter consolidation tests, 664–672
 - apparatus, 664, 666
 - coefficient of consolidation, horizontal flow, 668–670
 - equivalent drain diameters, 670, 672
 - implications, 671
 - procedure, 667–668
 - results, 667–671

Lateral drainage, 663

Lateral pressure tests, 676–680

Lateral strain measurement
 - geotechnical characteristics of tested soils, 523
 - ultrasonic method, 516–524
 - capabilities, 520
 - clay testing, 520–522
 - consolidation and creep tests, 521–524
 - determining measurement precision, 518–520
 - indicator, 516–518
 - interpretation of measurement, 519
 - principle of operation, 518–519
 - strain-time relationship for peat, 523
 - strength and dilatability characteristics, 520–521
 - ultrasonic device, 517

Leda clay, 694, 709
 - Anteus apparatus, 702–704, 706
 - compression curve, 698, 701
 - controlled gradient test results, 703, 705
 - effect of membrane stiffness on load-deformation response, 704
 - effect of specimen size on preconsolidation pressure, 698, 702
 - normalized pressure-void ratio relationship, 461
 - oedometer test results, 698, 700–702
 - properties, 695–696
 - Rowe cell, 700–704
 - strain versus log effective pressure relationships, 698, 700
 - testing program summary, 699
 - time-compression curves, 89
 - triaxial cell, 704–705, 707

Linear variable differential transformer, 217–219, 221

Liquidity index, 170
 - versus soil index property dependent coefficient, 182
Load increment ratio, 434
effect on shape of dial reading-time curves, 87–88
influence on subsequent time-settlement response, 34–35

Loading
history, 451
law, 286
rate
constant-rate-of-loading consolidation test, 255–256
versus liquid limit, 256
Logarithm of time fitting method, 225–226
Log C_r–log σ'_w, 418, 423, 425, 428–429
Log t method, 225–226, 528–529
Long-term creep test, 296–297
Louisville clay
consolidation curve, 438
geotechnical properties, 436
LVDT, 217–219, 221
deformation versus square root of time, 232
hardware, 218–221
configurations, 220
programming, 219
one-dimensional consolidation, 231, 233–234
software, 222–228
assumptions, 222
Casagrande construction, 222–223
Casagrande's logarithm of time fitting method, 225–226
inflection point method, 226–227
preconsolidation stress, 222–223
printed output, 227–228
Schmertmann procedure, 223–224
soil phase relationship conditions, 226–227
time-dependent analysis, 224–225, 231–232, 235
system calibration, 221
testing, 221–222
Mikasa's consolidation theory, 119, 127–128
Mikasa's method, 526–527
Model tests, 405
Modulus M_L, 313–314
Modulus number M', 314–315
Modulus of compressibility, 351
Modulus-stress plot, 303, 306
Mono 90, 594
Monterey #0 sand, properties, 570
Multiple-stage loading test, 393–396

N
Nanko Clay, 554, 556
effect of curing time on f-log p relation, 561
f-log c_v relations, 562
f-log p relations, 561, 563
relation of permeability and volume ratio, 559
time-consolidation curves, 558
Natural clays, consolidation, 378–403
clay behavior during testing, 386–387
controlled gradient test, 396–398, 400
creep test, 387–392
multiple-stage loading test, 393–396
numerical treatment, 383, 385–386
single-stage loading test, 392–394, 401
North Sea clay, incremental loading
odelometer test, 342
orton-Hoff law, 443, 449
orwegian Geotechnical Institute, 329–352
ottaway, Broadback, and Rupert River
region, 93
ow wick test, rate of consolidation, 654
umerical model, 118
comparison with centrifuge model,
124–126
soft clay deformations (see Time-de-
dependent numerical model, soft
clay deformation)

O
Occluded air bubbles
coefficient of consolidation, 45
flow rate, 44
Henry’s law, 42–43
initial compressive strain, 44
time rates of compression, 43
Oedometer test, 137, 282–297, 329–
352, 378, 451, 694, 696, 707
back-pressure cell, 283–284
back-pressure chamber, 331–332
ells, 330–332
clay, consolidation theory applica-
tion, 141–149, 151
boundary-value problems, 143–145
consolidation curves, 148–150
Cₚ constant case, 145–146
degree of settlement, 146–148
coefficient of consolidation, 346–349
determination (see Coefficient of
consolidation, determination)
consolidation curves, 277–278
consolidation equation, 527–528
creep, Batiscan clay, 387
curves exhibiting brittle behavior, 611
entrapped gas influence, 276–278
evolution, 283
alling head tests, 319
gas expansion, 276
highly compressible soils (see Highly
compressible soils)
improving, recommendations, 279–280
cremental loading (see Incremental
loading oedometer test)
crement of stresses, 279
etrapitation, 350–351
eda clay, 698, 700–702
ew techniques and procedures, 714–
715
primary consolidation errors, 276
blems, 276, 279–280
 specimen
saturation, 284–285, 300–301
stress distribution, 350
trimming equipment and procedure,
331–334
edium-to-stiff clay, 383
mounting with dry filter stones,
333–334
ery soft clay, 332–333
undisturbed specimens, 95, 97
with and without back pressure, 348–
49
See also specific types of tests
Oil sands sludge, 500
degree of consolidation, 512
low chart for sampling analysis,
509
ore pressure dissipation with depth,
512
olid content with depth, 513
Oil sand waste slurry, 126
Olga clay
 pressure/void ratio curve, 93–94
 secondary consolidation, relationship of rate to coefficient, 96
 settlement rate, 93, 95
One-dimensional consolidation test, 107, 130, 137, 451, 610
 brittle behavior, 613–618
 equation, 364–366, 549–550
 assumptions, 549
 governing equation, 385
 incremental loading, 615
 microcomputer applications, 231, 233–234
 theory, 645
Osaka Bay mud, 430
Overburden stress, 198–199, 258–259
Overconsolidation, 71, 82
 clay, 75–76
 idealized modulus-effective stress curve, 83
Oxford cell, 206–207, 212
 pneumatic loading system, 208

P
Parameter a, 314–316
Partial saturation, 7
Particle segregation, 548, 565–566
Peat
 coefficient of consolidation, determination, 539, 541
 fibrous, side friction (see Side friction, fibrous peat)
 saturated, isotropic compression tests, 124
 strain-time relationship, 523
Pepper shale, pore pressure versus time, 482–484
Permeability, 140, 173, 203, 205, 307, 315–320, 354, 465, 548
 calculation, 302
 change index, 318–319
 compression and, 303
 constant-head tests, 337–338
 correlation with special oedometer results, 319
 deformation effect, 318
 evolution during loading, 365
 parameters, 402
 selfweight consolidation test, 556–559
 sources of errors, 317
 strain-rate as function of, 170
 test, 110
 transversely isotropic soil, 466
 variation, 107
 homogeneous soil, 317
 void ratio relations, 303, 378, 380
 volume ratio relation, 559–560
Permeability law
 bilinear, 369
 comparison, 368
 evolution of consolidation, 369, 371–374
 nonlinear, 354, 375
 parameters
 choice, 367
 definition, 364
 schematic, 365
Plastic deformation, 188
 versus compaction energy, 190
Plasticity index, coefficient of consolidation, 430
Plasticity model, 125
Plasticity theory, validation (see Centrifuge model)
Plastic resistance, time-dependence, 72, 74
Plastic soils, saturated, 137
Poisson's ratio, 521, 600, 605
 between axial and radial direction, 476
Pore pressure, 236, 378, 405, 459–460, 465, 500, 567, 591
 base versus log of time, 26
 centrifuge tests, 576–578, 581–583
 dissipation, 37, 587
Pore pressure (continued)
with depth, 512
during initialization, 604
rates, 23–24
distribution in model landfill, 431
effect on preconsolidation pressure, Leda clay, 700–701, 703
evolution, 375
excess, 585
foundation, 125
generation, 98
high shear strength delay in increase, 97
influence of critical gradient, 367, 369
influence of drainage path length, 369–370
isochrones, 374, 388, 390, 393
CGT test, 398
selfweight consolidation, 551–552
vicinity of preconsolidation pressure, 390, 394
logarithm of time curves, 390, 392
measurements, self-weight consolidation testing, 509–511
negative, 236–237
nonuniform distribution, 204
ratio, 172, 459
average, constant-rate-of-loading consolidation test, 252–253
equation, 238
maximum, 173–174
response to loading and unloading, 605
versus time, pepper shale, 482–484

Pore water, flow velocity, 551–552
Preconsolidation pressure, 71, 80–85, 286, 289, 299, 303, 309–313, 694
apparent, 451, 460
Champlain clays, 722
comparison of studies showing dependence on strain rate, 447–449
compression-log pressure curves, 81
constant-rate-of-strain test, 401
correlation between constant rate of strain test and conventional incremental tests, 310
field tests, 309
correlation between different oedometer tests, 401
definition, 460
effect of base pore water pressure, 700–701, 703
effect of deformation rate, 312
effect of specimen size, Leda clay, 698, 702
highly structured clays, 81
idealized modulus-effective stress curve, overconsolidated clay, 83
influence of test procedure, 100
in situ values, 83–84
normalized-void ratio relationship, 460–462
oedometer test, 82
overburden pressure ratio, 74–75
versus parameter a, 316
remolded clays, 82
settlement rate near, 93, 95
strain rate relations, 83–85, 313, 399, 443–446, 721, 722
stresses close to, 302
time dependence, 82
void ratio curve, Olga clay, 93–94

Preconsolidation stress derived, 345
determination from plasticity index and undrained shear strength, 351–352
maximum possible, 223
vertical stress exceeding, 97

Prefabricated drains (see Bentonite-sand mixtures; Remolded soils, prefabricated drains; Wick drains; specific drains)

Preloading, 684
CRS tests on very soft soils, 412–415
as soft ground stabilizer, 131
Pressure transducer, 206
 calibration and stability, 210–211
differential, 215
Prestress, saturated *(see Saturated prestress)*
Primary consolidation
 defined, 86
 errors in oedometer test, 276
 rate, 87
 ratio, 526
 correction of coefficient of consolidation, 530–531
 self-induced, 97

Q
Quasi-static loading, 451

R
Radial drainage test, 116, 294–296
Radial flow consolidation testing, 7, 27–31, 62–63
 average degree of consolidation, 28–29
 factors recommended for use with, 30
 smear zone, 30
Rapid loading test, 18–19
Rate process theory, 523
Rebound index, 245, 252
Recopression
 curve, 455–456, 459
 index, 80
Regression equations, 184
Reloading, 335
Remolded soils, prefabricated drains, 663–683
 average soil parameters, 665
crimp tests, 673–675, 679
further research needs, 681
laboratory tests, 664
large diameter consolidation tests *(see Large diameter consolidation tests)*
lateral pressure tests, 676–680
load transfer before buckling, 682–683
Remolding criterion, 289
Restricted flow consolidation test, 111–112, 203–216
 behavior during consolidation stage, 212–213
 cell requirements, 205–208
 comparative results, 214
 development, 210–213
 errors, 210
 experimental details, 208–210
 flow restrictor, 205–206
 Oxford cell, 206–208, 212
 potential, 215
 principle, 204–205
 results, 213–215
 Rowe cell, 206, 208–209, 212
 soft sample results, 214
 swell-back stage, 212
test arrangement, 209
undrained incremental loading for partly saturated soil, 211
Rheologic model, 36, 113
Ring friction, 21–23
Rope drains, 684
 pore water pressure distribution, 692
 relations of time versus degree of consolidation, 688
 settlement strain distribution, 691
Rowe cell, 206, 437, 694, 697
Leda clay, 700–704
 modified, 119
 restricted flow consolidation test, 208–209, 212

S
Saint-Cesaire clay, SSL test, 394
Saint Herblain clay, 354
 characteristics, 357
 compression and permeability curve, 357, 361–363
 physicochemical characteristics, 380
Salt infiltration, 627
 effects, 636–638, 640
Sample disturbance, 329, 343–347
Sand-clay mixtures
 advantages, 627–628
 compressibility, 130
See also Bentonite-sand mixtures
Sand drains, 684
 relations of time versus degree of consolidation, 688
 settlement strain distribution, 691
 vertical, 643
Sand, shear and dilatancy characteristics, 520–521
Sandy clay, deformation characteristics, 522
Sandy soil, classification diagram, 636
Saturated prestress, 111, 184
 embankment, 202
 prediction equation, 196
Saturation
 by back pressure, 285
 compacted kaolin, 109
 degree, 109
oedometer test, 284
 heat-accelerated test, 292
 incremental compressibility test, 286
 radial drainage test, 294–295
 partial, 190
Scaling relationships, 127
Schmertmann procedure, 223–224
Secondary compression, 257, 617, 684
 displacement-time curves, 113
Secondary consolidation, 31–41, 63, 87–91, 100, 257
 average degree of consolidation, 36
 compression following primary consolidation, 32–33
dashpots, 39–40
defined, 31, 88
degree of consolidation versus time for Drammen clay, 39
effects of nonlinearity, 39
 incremental loading, 40
 influence of compression on subsequent void ratios, 33–34
 mechanism, 544–545
 phenomenon, 268–270
 rate, 88
 versus consolidation ratio, 90
 relationship to coefficient, 96
reformed peat, 34
rheologic model, 36–37
secondary curve slope, 35
settlement
 embankments, 92
 versus log of time, 32
 subsequent time-settlement response, 34–35
 theories, 35–41
time-settlement curve for Drammen clay, 38
See also Highly compressible soils, inter-granular viscosity
Sedimentation, 490, 500
 self-weight consolidation testing, 501–503
Sedimentation test
 apparatus, 424
 f-log σ', 424–427
 log C_v-log σ_'w, 425, 428–429
Sediment waste, nonconventional tests, 134
Seepage consolidation test, 565
Selfweight consolidation test, 126, 128, 425, 430, 500–514
 in centrifuge, 548–566
 coefficient of consolidation, 562, 564–565
 compressibility, 559–562
 disadvantage, 565
general consolidation equation, 549–550
 initial settlement rate, 551–553
 Mark IV centrifuge, 555
 permeability, 556–559
purpose, materials, and procedures, 553–556
similarity law, 549–550, 553
specimen conditions before and after curing, 562
under single drainage condition, 551–552
velocity of pore water flow, 551–552
comparison of predicted and experimental consolidation, 513
flow chart for sludge sample analysis, 509
large-strain slurry consolidometers, 503–504
pore pressure
dissipation with depth, 512
measurement, 509–511
sampling mechanism, 506, 508
sedimentation and consolidation states determination, 501–503
solids content with depth, 513
ten-metre selfweight consolidation cylinder, 507
ten-metre tests, 506–514
two-metre slurry consolidation cylinders, 585–586
Sensitive clays (see Soft clays)
Settlement, 100, 299, 591
calculation, 307
compacted fills, 111, 197–200
comparison of field and theory, 59–60
compensated foundation, 261
compensated friction pile foundation, 262
degree, 146–148
differential, 684, 690
due to selfweight, 198
during loading and unloading, 606
embankment, 92, 262
fill due to saturation, 199
fill over soft ground, 684–693
construction procedure, 689
design conditions, 686
design method, 686
model of ground, 686
pore water pressure distribution, 692
profile of differential settlement, 690
profile of filling procedure and slip failure, 685
relation between coefficient of secondary compression, 692
relations of time versus degree of consolidation, 688
residual settlement, 687
settlement strain distribution, 691
settlement versus time curves, 689–690
soil conditions and estimation of settlement, 686–687
soil profile and properties, 685
surcharge versus consolidation settlement, 687
time of surcharge and design of vertical drains, 688
Illicon computer program, 94
model landfill, 431
natural degree, 152–153
Olga clay, 93, 95
overestimation, 99
prediction of rates, 76–77
prefabricated drains, 681
rate, selfweight consolidation, 551–553
ratio of ultimate to primary, 37
residual, 132, 687
secondary, 617
selfweight consolidation, 430–432
storage tank, 124–125
surface, during initialization, 603
ultimate, 97–98
versus time curves, 289–290, 295–296
time factor relations, 533, 535
total final, 147
Settlement (continued)
vertical, centrifuge tests, 583–584
Shear, sand, 520–521
Shearing stress, local side, 21
Shear strength, undrained, as function of preconsolidation stress ratio and plasticity index, 353
Side friction, fibrous peat, 485–489
effective stress distribution on base, 487–488
test data, 486–489
variation of strain and stresses with time, 487
Silts, k-line, 347–348
Silty clay, deformation characteristics, 522
Similarity Law, 549–550, 553
Simulated CGT tests, Batiscan clay, 397
Singh-Mitchell creep parameters, 569
Single-stage loading test, 392–394
Slip failure, 685
Sludge, compressibility, 130
Slurry, 548
Smear zone, hydraulic conductivity, 30
Snow-Cal 50, 594
Soft clay, 433, 548, 694
CRS consolidation test, 405–432, 437
application to settlement analysis, 430–432
calculation procedure, 422
coefficient of primary consolidation, 439
consolidation constant determination, 416–418, 420–422
constant compression index and coefficient of consolidation assumption, 419, 424–430
curve-fitting on selfweight consolidation process, 425
equipment, 410–411
\(f \)-log \(\sigma' \), 418–419, 423–427
graphic representation, 408, 410
log \(C_v \)-log \(\sigma'_{uv} \), 418, 423, 425, 428–429
original data, 420–421
physical properties of samples, 412
pore pressure, 440
preloading, 412–415
record of experiments, 416
sample specimen preparation, 410, 412
test results, 439–441
theoretical basis, 406–408
volume ratio versus log effective stress, 423
See also Sedimentation test
deformation (see Time-dependent numerical model, soft clay deformation)
icremental loading oedometer test, test results, 438–439
trimming, 332–333
Soil
anisotropic properties, measurement, 465–467
anisotropic soils, biaxial consolidation test (see Biaxial consolidation test)
characterization, 593
critical state parameters, 599
gaseous, 717
improvement, 663
mechanics, 71
model, four-phase, 629–630
definitions of physical properties, 630
homogeneous, natural variation in permeability, 317
with occluded air bubbles, coefficient of consolidation, 45
parameters, 665
partially saturated, 109
phase diagram, 188
phase relationship conditions, 226–227
plastic, saturated, 137
problem soils, 716–717
profile, 685
properties, 8, 71, 177, 203, 243, 595, 685
remolded, 100
stratification and properties, 52
structure, 71, 100, 610
 bentonite-sand mixtures, 628–629
 resistance to compression, 99
tests, 71, 516
unsaturated (see Unsaturated soil)
unsaturated (see Unsaturated soil)
very soft, 405
volume change, 133
volumetric flow rate, 675
Soil index property dependent coefficient, 178–179
 versus liquidity index, 182
Solids content
determination to dilute suspension, 122–123
measurements, 500
Specimen preparation
 anisotropic, 453
 centrifuge model, 594–596
 isotropic, 452–453
 soft clay, 410, 412
 trimming, 331–334
Stabilization, 663
Standard incremental test (see Conventional-incremental-loading test)
Stiffness constants, 470, 479
Strain
definition, 8–9
distribution
 fill settlement, 691
 within specimen, 409
equal, 645
finite (see Finite strain)
free, 645
initial compressive, 44
lateral (see Lateral strain measurement, ultrasonic method)
versus log effective pressure, Leda clay, 698, 700
natural, 532
nominal, 532
ratio of bottom to top strain, 408, 410, 413, 417–418
 time relationship for peat, 523
total, increment, 385
vertical (see Vertical strain)
volumetric, 41, 264–267
Strain rate, 117–118, 170–174, 378
 comparison of test methods, 442–443
 comparisons of rates, 183
 constant gradient test, 326
 constant rate of strain test, 326
 effect on preconsolidation pressure, 83–85, 399
 elastic components, 382
 equation, 171–173, 179
 governing, 379
 natural clay, 719
 parameter determination, 173–174
 plastic strains, 382
 preconsolidation and, 313
 pressure relations, 443–446, 721, 722
 previous work, 171
 relationship to controlling parameters, 171–172
 shear stress relationship, 523–524
 strain relations, Batiscan clay, 390–391
 variation of α_2 coefficient, 722
Stress
effective, 173
 average, 47, 301, 308
 distribution in centrifuge, 598
 mean, 48
 parabolic isochrone, 388
 in terms of volumetric strains, 470
 vertical, 123
 undrained paths under triaxial conditions, 600–601
 vertical (see Vertical stress)
 volume change relationship, 129
Stress-compression, 97–98
Stress-strain relationship, 8–9, 118, 302, 399, 402
Acthafalaya clay, 19
Stress-strain relationship (continued)
Batiscan clay, 390–391
clay from Hammond, Indiana, 10
curve, correction, 345–346
field and laboratory curves, 59–60
nonlinear, 7, 9, 410
average degree of consolidation,
26–27
base bore pressures versus log of
time, 26
coefficient of consolidation, 25–
27
curves, 25
primary effects, 25–27
samples taken using thin-walled, fixed
piston samplers, 55
secant parameter, 267
Suction, 236–237
Suspension density, 490
Swelling, 194, 197
Swell potential, influences on, 133
Syndrude Canada Ltd., 500

T
√t method, 528–529
Tangent modulus, 348
Taylor’s √t, 127
Terzaghi’s consolidation theory, 7, 99,
137–151, 217, 645
application to oedometer test (see
Oedometer test, clay, consolidation theory application)
assumptions, 222
coefficient of consolidation, 140–141
compressibility, 139–140
consolidation equation, 369
continuity and compressibility, 139
differential equation, 44, 69, 140–
141
significance, 152
linear coefficient of volume de-
crease, 139–140
modified, 118
permeability, 140
primary time factor, 267
See also Microcomputer applications
Three-dimensional consolidation, 645–
647
Time-compression curves, Leda clay,
89
Time-consolidation relation, 134, 526
Time-dependent numerical model, soft
clay deformation, 567–591
analysis and comparison, 583, 585–
589
apparatus, 571
instrumentation, 572
material, 569–570
model preparation, 572
Series I results, 574–580
analysis and comparison, 586–588
deformations, 579
finite element mesh and boundary
conditions, 587
pore pressure response, 576
transducer locations, 576
vertical deformations, 579–580
Series II results, 574, 579, 581–584
analysis and comparison, 588–589
finite element mesh and dimen-
sions, 588
pore pressure response, 576–578
vertical settlements, 583–584
testing procedures, 573
test listing, 575
University of California at Davis
Schaevitz centrifuge, 570–571
Time factor
consolidation of finite strain, 534
settlement relations, 533, 535
values associated with midphase ex-
cess pore pressure ratio, 24
wick drains, 670
Time-scaling factor, 589
Tokuyama Clay, 554, 556
f-log p relations, 563
relation of permeability and volume
ratio, 560
time-consolidation curves, 557–558
Triaxial cell, 110, 694, 697–698
kaolin, 709
Leda clay, 704–705, 707
Two-dimensional consolidation, 567, 645–647
Two-phase flow, 154

U
Ultrasonic device, 124
Ultrasonic method, lateral strain measurement (see Lateral strain measurement, ultrasonic method)

U
Unsaturated soil, 717
comparisons between theoretical analysis and laboratory results, 167
consolidation theory, 154–157
constitutive equations, 155
continuity requirement, 155
laboratory tests, 157–161
change of stress-state variable components, 159
equipment, 158
soil structure and water phase volume changes, 159–161
volume-mass relations, 158
theoretical analyses, 160, 162–167
two-phase flow, 154–155

V
Varved clay, 610
geotechnical aspects, 611–613
Vertical drainage system, 642
Vertical drains, 684
design, 688
Vertical pressure, 141
Vertical strain, 406
CRS test, 618
due to saturation, 198–199, 202
one-dimensional consolidation test, 614–615
Vertical stress, 437
Bemben method, 622–624
breakpoint method, 620–622
CRS test, 618
distribution in centrifuge model, 590
limiting pressure, 315–316
one-dimensional consolidation test, 614–615
previous, 618
maximum, 621
void ratio behavior, 204
anisotropically and isotropically prepared specimens, 456–459
isotropically prepared specimens, 455–456
Viscoplastic constitutive equation, 382–383
Void ratio, 10, 48, 123, 627
clay component, 637
effective consolidation pressure relations, 631, 633–636
effective vertical stress (see Vertical stress, void ratio behavior)
effect of nonclay content, 630
effect on percent volume change, 194, 196
elastic volume change, 620
normalized, preconsolidation pressure relationship, 460–462
sand-clay mixture, 130
threshold nonclay, 634–635, 640
vertical effective stress and, 204
Volume change, 154
one-dimensional percent change, 194
void ratio effects, 194, 196
water content effects, 196
Volume compressibility, 548
Volumetric field flow rate, 678

W
Waste slurry, 500
Water, flow through clay soils, critical gradients, 118
Water content, 617
compacted fills, 191
Water content (continued)
 virgin compression index relation, 624
Water phase, 109
 partial differential equation, 156
Water release, 642, 656–657, 659, 661
Wick drain consolidometer, 132, 642,
 651–652, 654, 666
Wick drains, 644, 663, 717
 equivalent diameter, 132
 flow within zone of influence, 646
 performance, 131–132
 percent consolidation, 131
 rigid-core wick, 132

 time factor, 670
 use to speed up consolidation, 132
 See also specific types of drains
 Wykeham Farrance triaxial cells, modified, 158

Y

Young's modulus, 588

Z

Z-Unit, 266–268