Subject Index

A

AATC (see American Association of Textile Chemists and Colorists)

Acetone, permeation rate, 90

Adsorption, 39

Advanced gas-cooled nuclear reactor, working environment (see also Thermal protective clothing, dynamically insulated), 536

Agricultural worker, 95

Air blast applicators, use of protective clothing and equipment with, 104, 111

Air permeability, 151

Air thermometer, 379

Alcohol, permeation in hairless mouse, 230

Allergenic substances, 246

Aluminized coats, 475, 482

Aluminized fabrics, molten iron splash protection (see also Asbestos, aluminized), 401

Aluminum

nonwoven, dynamic temperature measurements, 383

sticking on fabrics, 439

Aluminum/wool, dynamic temperature measurements, 385

American Association of Textile Chemists and Colorists (AATC) test methods

AATC Test Method 22-1980: 180

AATC Test Method 61-1980: 166, 180

AATC Test Method 79-1979: 140

AATC Test Method 124-1978: 158

Ammonia cure process, 439

Aniline, glove permeation testing, 75

Anthropometric fit testing and evaluation, 556–568, 616–617

analysis and reporting, 566–567

anomalies, 561

battledress uniform for men and women, 591

bivariate frequency table, 559

data collection phase, 560–566

debriefing, 563, 566

hand size dimensions, 566

integration of assemblage, 562, 564

pretest preparation, 557–560

procurement tariff, 567

questionnaire, 560

Anthropometric sizing system, 569–580, 616–617

battledress uniform for men and women, 581–592

20-size system, 585–587

anthropometric design values for three sizes of shirt, 588–590

average ranges to be accommodated, 584–585

construction and grading of master patterns, 587–591

derivation of sizing systems, 582, 584–587

key sizing dimension, 582

shirt size categories and tariff, 588
Anthropometric sizing system (cont.)
battledress uniform for men and women (cont.)
trouser size categories and tariff, 589
bivariate frequency plot of stature and weight values, 575
bivariate plot of height and width with three-size system, 577
eight-size system for total body, categories and tariff, 579
problems with scaling sizes, 570
steps for developing, 573
summary statistics for size X-large regular, 574, 576
three-size anthropometric sizing system, 578
three-size system based on size medium, 570-572
Applicators, 95-96
average exposure (see also California pesticide applicators’ attitudes and practices), 97
Aramid fabric, 331-332, 389, 470
Asbestos
abrasion testing, 454
aluminized, 458-459
heat transmission factors, 313
molten iron splash protection, 401
average calorimeter temperature rise in molten splash, 457
fabric, properties, 450
gloves, 399-400, 451-454
history of use, 446
molten iron splash evaluation, 459
properties, 447-449
substitutes (see also Fiberglass; Zetex), 446-460
properties, 448
raw materials, 447
visual ratings of fabrics, 456

ASTM Committee F-23 on Protective Clothing, history of, 1-2

ASTM permeation cell, 22, 28-30

ASTM standards
B 117-73(1979): 154
D 737-75(1980): 154
D 1388-64: 397
D 1682-64(1975): 139, 165
D 1776-79: 140, 165, 189
D 1777-64(1975): 154
D 1910-64(1978): 154
D 2863-77: 392
D 3467-76: 40
D 3512-82: 398, 402
D 3775-84: 189
D 3776-84: 189
D 3787-80: 398
D 3884-80: 454
E 84-84: 392
E 96-80: 154
E 622-83: 392
F 903-84: 253-254, 263-264, 612

Blackbody, emissivity, 378
Blasocut Blaser, 61
Body size variability, 556, 569
Breakthrough time (see also Permeation testing), 7
defined, 256
liquid chemicals through clothing materials, 126
Saranex laminated Tyvek, 278
screens of materials, 122-123
British standards
BS 3791: 311-313, 316-317, 320, 326, 612
BS 4724-1971: 123, 131
BS 6357: 407, 413, 417
Burn injuries, 463
Burn prevention, 475
Burrell's solvent spectra approach, 35
Burton’s equation, 516, 529
n-Butanol, 214-215, 218
Butyl rubber, 51
Butyl rubber gloves, 75–76, 78–79, 219
Butyl suits (see also Encapsulated chemical suits)
hydrogen cyanide permeation, 53, 55
problems with, 276–277
suit weight and noise level, 281, 284

C
Caliban finish, 439–440, 614
California pesticide applicators’ attitudes and practices, 103–112
applicators using air blast and other methods of pesticide application, 111
commercial applicators’ and growers’ responses, 109
frequency of safety equipment with reasons for low use, 107
laundering of work clothes, 104, 111–112
procedure for evaluation, 107
responses to clothing-related questions, 107–108
responses to cost and risk versus benefit questions, 108
sources of information on pesticide application, 106
storage and cleaning of clothing practices, 111–112
study of objectives, 105
users of Categories 1 and 2 pesticides and users of Category 3 pesticides, 110
users of restricted versus nonrestricted pesticides, 109–110
Calorimeters, 311
disadvantages, 416–417
Carbaryl, 95, 96
Carbon tetrachloride, adsorbed mass calculation, (see also Fabrics, adsorptive, evaluating), 45–46
Carcinogenic substances, 246
Cellulose, solubility parameters, 199
Chemical agent detection, 39
Chemical exposure hazards, 207–212, 610–611
decontamination and reuse, 211–212
exposure assessment, 210–211
protective clothing use, 209–210
Chemical protective clothing (see also Seams and closures; specific types of clothing), 207
decontamination (see Decontamination)
defined, 250
entrapment of substances, 212
field evaluation, 250–256
degradation testing, 251–253
penetration testing, 253–255
permeation testing (see Permeation testing)
fit testing, 561–563
gap in two-piece garment, 562–565
heat exchange, 515–534
cooling benefits from cover evaporation losses, 528–529
effects of pumping coefficients and solar heat load, 532–533
experimental and predicted results with wetted cover, 527
heat exchange model predictions, 526–528
mannikin runs, 524–525
model predictions, 529–532
net skin heat loss with wet cover, 531–532
Chemical protective clothing (cont.)
heat exchange (cont.)
permeability index, 525, 528
procedure, 522-524
water requirements to maintain wet cover, 530
wetting with helmet, 533
model runs, 525-526
permeation resistance, 32-38, 607-609
criteria for selection of test chemicals, 37
proposed test battery, 35, 37
solubility parameter, 33-36
potential exposure of worker with, 221
reuse, 211-212
selection and use, 235-242
available levels of protection, 237-238, 240-241
consequences of direct skin contact, 237, 240
employee training for, 239, 242
likelihood of skin exposure, 236-237, 240
most appropriate selection, 238-239, 241-242
selection using permeation and toxicity data, 243-249
permeation class, 247-248
risk information (see Risk information)
use, 209-210
Chemical resistance test methods, 250
Chemical skin exposures, 208
Chemicals, permeation through skin, 221-233
alcohol permeation in hairless mouse, 230
as function of tape stripping of skin, 224
comparison of mouse skin with human skin, 229
enhancers, 231
human skin, 228
in vitro permeation, 227, 231
in vivo procedures, 227
moisture vapor transmission in skin, 225
non-electrolytes from aqueous solutions, 229
permeability coefficient, 228
risk, 222-223
routes, 225
stratum corneum, 225-226
test methods, 226-228
Chemical toxicity, 243
Chlorine, permeation testing, 52
Clothing insulation (see also Thermal protective clothing), 515
Coal tar, glove permeation breakthrough times, 18
Contact thermometer, 379
Convective heat, 327
flux, 421
protection against, 330-331
behavior of aramid fabric, 331-332
extreme specimen distortion, 331, 333
sensor response, 334-335
Corona discharge, 593
Corrosive substances, rating scale, 246
Cotton, comfort ratings versus polybenzimidazole-blend fabrics, 396
Cotton fire-retardant fabric, heat protection (see also U.S. Navy protective clothing program), 469-470
Cotton flame-retardant fabrics, 422, 438-444
ammonia cure process, 439
bulk density retention, 366-367
diathermacy, 370-371
fabric evaluation, 441-444
mass retention, 364
molten aluminum pour test, 442-443
physical properties, 441, 444
single and multiple layers, 421-437
0.3 cal/cm²/s radiant heat only, 427-429
1.0 cal/cm²/s convective/radiant exposure, 427, 430-431
2.0 cal/cm²/s convective/radiant exposure, 427, 432-433
comparison of contact versus spaced fabric/sensor configuration, 426
effect of color on radiant heat protection, 435
instrumental methods, 422-423, 426-427
materials, 422, 424-425
multiple-layer assembly diagram, 435
protection times, 434, 436
thickness retention, 365-366

Critical body voltage, 593

D

Data base
protective clothing permeation testing, 88-89
protective effects of glove materials, 67-73
chemical resistance file, 69-70
data base structure, 69
data input, 68-71
manufacturer file, 69
medical report file, 70-71
output data, 71-72
product file, 68
recommendations for improvement, 72-73
reference file, 71

Decontamination, 207, 211-212, 612
defined, 299
encapsulated chemical suits, 288, 290
fire fighter turnout gear (see Fire fighter turnout gear, polychlorinated biphenyl decontamination)

Degradation, 250
testing, 251-253

Derksen curve, 466-467

Dermal exposure, pesticides, 96-97
Dermal pad dosimeters, 96

Dermatitis, 214

2,4-Dichlorophenoxyacetic acid, 95-96

Dimethylformamide, glove permeation testing, 75

Dimethyl sulfoxide, 231

DIN (German standard) 23 320, Part 1:321

Dinoseb, 114

Disposable garments, 151
Dump valves, 286, 293

Durable-press finish, 136, 162, 177, 180
increased pesticide penetration, 182
methyl parathion, distribution on fabrics (see also Malathion, distribution on fabrics), 200

Durable-press resin finishes, 138

E

Electron emission, 593

Electron microscopy, 187

Electrostatic spark discharges, incendiary behavior, 593-603, 617
critical body voltage
hydrogen ignition, 601
methane ignition, 599
Electrostatic spark discharges (cont.)
ignition apparatus, 595-597
ignition tests, 597-598
minimum ignition energy, 594-595, 598-599
gas mixtures, 598-599
methane, 601
thermal effect on, 599-600
quenching effect of electrodes, 594-595
Encapsulated chemical suits, 286-296, 612
maintenance of, 292-296
drying, 292-293
laundring, 292
reassembly, 293
soapy water inspection, 294-295
storage, 295-296
visual inspection, 293-294
simulated work environment, 276-285
protection factor and recovery
time variability with air flow, 285
suit weight and noise level comparison (see also Tyvek, Saranex laminated; Butyl suit), 284
use procedures, 287-292
air cutoff, 291
buddy system, 287
communications, 288-289
decontamination, 288, 290
doffing, 290
in fire, 291-292
loss of suit integrity, 290-291
multiple-person donning, 287
planning mission, 287-288
ready personnel, 287
self-extinguishing suits, 291-292
training, 290-292
Equilibrium sorption capacity, adsorptive fabrics, 45-46
Esso Somentor 33, 61
Evaporative heat loss, 515

F
FAA (see Federal Aviation Administration)
Fabric functional finishes (see also specific finishes), 136-149, 162
aerosol spray penetration, 151-160
air permeability test results, 155, 157
dry spray, 158, 160
fabrics, 153, 155, 157
physical data, 154-156
water vapor permeability, 155, 158-159
contamination of fabric, 139
effect on pesticide residue remaining after laundering, 168-170
extraction procedure, 141
fabrics tested with, 138-139
fluorocarbon finishes (see Fluorocarbon finishes)
gas chromatographic analysis of, 141
laundering of contaminated fabrics, 140, 147-149
longevity of soil-repellent finishes, 172-173
methyl parathion residues after laundering, 148
moisture passing through textile layers, 137
moisture-related fabric properties, 139-140
pesticide penetration, 140, 143-147, 177-185
analysis of, 181-182
capillary forces, 137
effects of laundering, 183-185
exposure amount, 180-181
fabrics and finishes tested, 178-180
pesticide extracted from collector layer, 182-183
statistical analysis, 184-185
pesticide wetting and wicking, 140-142
resin finishes, 138
statistical analysis, 141
water-repellent, 164
Fabrics, adsorptive, evaluating, 39-49
baseline mode, 43
breakthrough time, 46-47, 49
capacity, 49
challenge stream generator, 40-41
challenge stream mode, 43
degassing mode, 43
detection system, 41
equilibrium sorption capacity, 45-46
extrapolation of curve to saturation, 44-45
sample cell, 41-42
sorption kinetics, 46-48
test plumbing and instrumentation, 41-43
tests
mode, 43-44
reproducibility, 48-49
result curve, 44
total adsorption capacity, 48
Federal Aviation Administration standard FAA-RD-75-176: 311-312, 314, 612
Federal Aviation Regulation (FAR) 25.853b: 406
Federal test method standards (FTMS)
FTMS 191: 406, 465
FTMS 191A: 499
FTMS 191-5903: 392
FTMS 191-5905: 402
Fiberglass
aluminized, molten iron splash evaluation, 459
properties, 449
texturized (see Zetex)
Fire fighters, 463
temperature exposure, 464, 490
Fire fighter's turnout gear, 615-616
burn injuries and specific body regions, 489
functional integration, 487-495
methods, 490
heat protection characteristics, 472
history, 487-488
polybenzimidazole-blend fabrics, 400, 402-403
polychlorinated biphenyl decontamination, 298-307
analytical method, 300-301
decontamination results, 302-303
fabric sampling protocol, 300
Freon shower decontamination approach, 305-306
Freon solvent system decontamination, 301-303
process description, 303
site contamination and decontamination, 301
techniques and physical damage, 304-305
thermal protective performance rating, 491-494
Fire retardant materials, 497
Fires, use of encapsulated chemical suits in, 291-292
Fit testing (see Anthropometric fit testing and evaluation)
Flame impingement, 340
Flame ionization detector, 7, 41
Flame resistance, 421
polybenzimidazole-blend fabrics, 392
Flame-retardant finishes, 359
Flames
heat transmitted through uniform fabric/underwear combinations, 471
protection against (see also specific fabrics), 317-325, 329
convective heat transfer, influence of specimen mounting, 324
curved calorimeter, 321-322
estimated burn time, 318-319, 323
estimated pain time, 318-319, 323
fuel gas and calorimeter influence, 319
heat sensors, 319-320
heat source, 317-319
mounting plate as physical restraint, 324-325
specimen mounting, 320-325
transmitted heat measurement, 330-334
U.S. Navy protective clothing program, 500-501, 505-507
Flammability, 465
Fluorocarbon finishes, 137-138, 151, 162, 164-165
longevity, 173-174
pesticide action on penetration, 145
wick, 142
residues on after laundering, 169
Formaldehyde, permeation testing, 52-53, 56
French Experimental Standard S74-107: 407, 413
Freon 113 decontamination process, 304
Freon shower decontamination approach, 305-306
Freon TF solvent, 298, 301-303
Functional finishes (see Fabric functional finishes)

G
Glove materials
data base on protective effects (see Data base, protective effects of glove materials)
influence of thickness on permeation resistance, 75-81
breakthrough time, 77, 80
procedure, 76-77
results, 77-79
permeation measurement, 7-20
breakthrough times, 16-17
comparison measurement methods, 11
experimental method, 8-10
glove thickness and density, 12-13, 17
glove types studied, 10
liquefied coal, 15-18
permeation rate, 16
stainless steel permeation cell, 9
toluene, 11-15
washing experiments, 18-19
permeation resistance, 241
pesticide permeation testing, 99
testing against metal cutting fluids, 59-66
candidate materials, 62-63
challenge chemicals, 61
permeation testing, 60-61, 63-64
tensile strength testing, 62, 65
vulcanizing agents, 66
Gloves (see also Organic solvents, bioassay for glove performance), 207
anthropometric comparison of fit test sample, 566
asbestos, 451-453
chlorine permeation testing, 53
formaldehyde permeation testing, 53
high-temperature use, 399-400
procurement tariff, high-altitude
gloves, 567
testing, 451-453
whole glove permeation testing, 256-257
Zetex, 451-453
Gore-Tex, 491
Ground boom sprayer, 95
Ground rig applicators, average ex-
posure, 97
Guinea pig model, 214
skin absorption of chemicals, 218
Guthion, 114

Heat conduction, 340
Heat exchange
balance equation, 549, 551-554
chemical protective clothing (see
Chemical protective clothing, heat exchange)
convection coefficient, 524
dry, and cooling efficiency, 516-518
evaporative heat loss from wetted
cover, 518-519
from impermeable layer to cloth-
ing surface, 520-521
from skin to impermeable layer, 520
heat removal capability of air, 553
linear dew point temperature, 521
model predictions, 526-528
saturated vapor pressure, 519-522
sensible heat loss, 551
sweating loss, 552
wetted cover, 517
Heat flux, 423
Heat sensor, 311
Heat stress, 406, 515, 616
Heat transfer, 358
Hexane, glove permeation testing, 75
Hydrogen, 593
critical body voltage, 601
Hydrogen cyanide, permeation test-
ing, 52

Ignition
hazard, 593
resistance, 465
time to, 340
Impermeable garment, 515
Infrared radiation theory, 377-379
Infrared spectroscopy, permeation
tests, 22-30
ASTM cell pressure and detection
of breakthrough time, 29
breakthrough time versus static
pressure, 30
cell leakage, 29
effects of varying pressure and
flow rates, 28-30
in-series or multiple tests, 26-27
purge time, 25-26
single-beam infrared instruments, 23
static pressure in closed system, 28
Teflon-lined gas cell, 25
Infrared thermometer, 376, 379-380
International Organization for Stan-
dardization (ISO) standards
ISO/DIS 6529: 123, 132
ISO/TC94/SC9/WG1N38: 318
K

Kelvar, 389
bulk density retention, 366-367
mass retention, 363
thermal properties, 371-372
thickness retention, 365-366
Kirchhoff’s law, 377

L

Latex rubber, 51
Laundering, 136
contaminated clothes, 140, 152
distribution of malathion and methyl parathion (see Malathion, distribution on fabrics; Methyl parathion, distribution on fabrics)
effectiveness, 147-149
effect on barrier properties, 183-185
encapsulated chemical suits, 292
procedure effects, 163-175
effect of finishes, 165-166, 168-170
effect of laundry treatment, 169, 171
effect of pesticide class, 169, 171-172
effect on laundering, 165-166
extraction and analysis of pesticides, 166-167
fabrics tested, 164-165
hot water, 163
insecticides, 165
longevity of finishes, 172-173
recommendations, 174-175
residue remaining, 168-170
specimen contamination, 165
statistical analysis, 167
Lightweight clothing materials, heat protection (see also Thermal protective clothing fabrics, test methods), 340-356
effect of assembly thickness on temperature rise, 352, 354
fabric descriptions, 351
factors that control performance, 341
heat transfer and estimates of burn injury, 351-356
ignition times, 351
modeling thermal environment of large fire, 342-345
quartz-faced heater panels, 343
specimen temperature as function of time, 348
strength loss times, 350
strength retention at equilibrium temperature, 348
temperature in skin stimulant, 352-353
temperature rise at depths in skin-stimulant device, 354-355
thermal energy absorbed, 341
transference of heat from outer to inner layers, 341

Liquefied coal
contaminants after wash experiments, gloves, 18
glove permeation, 7-8, 15-18
breakthrough times, 16-17
chromatographs, 20
glove thickness and density, 17
permeation rate, 16

M

Malathion
chemical structure, 188
distribution on fabrics, 187-203
backscattered electron images, 193
contamination procedures, 189-190
determination of pesticide residue, 190
distribution of pesticides on surface and within fibers, 198
electron microscopy, 191
fabrics tested, 188–189
laundry procedure, 191
residues remaining after laundering, 192, 199
retention on durable-press after laundering, 201
retention on surfaces of fibers, 196, 202–203
solubility parameters, 199
summary of analyses of variance, 197
physiochemical parameters, 189
Mancozeb, 95, 96
Matrix release, 207, 211
Metal cutting fluids, 59
Methane, 593
 critical body voltage for ignition, 594, 599
 minimum ignition energy, 601
Methyl isobutyl ketone, glove permeation testing, 75
Methyl parathion
 adsorption through outer garment fabric/undergarment fabric/skin, 146
 chemical structure, 188
distribution on fabrics, 187–203
 backscattered electron images, 194–195
contamination procedures, 189–190
determination of pesticide residue, 190
distribution on surface and within fibers, 198, 200
electron microscopy, 191
fabrics tested, 188–189
laundry procedure, 191
residues remaining after laundering, 192, 199
retention on surfaces of fibers, 196, 202–203
solubility parameters, 199
summary of analyses of variance, 197
outer garment fabric sorption, 143
penetration and functional finishes, 180–185
penetration through outer garment fabric/sentinel pad system, 144
physiochemical parameters, 189
residues after laundering, 136, 148
spun-bonded olefin/outer garment-fabric/sentinel pad sorption, 147
Military standard MIL-C-43858: 41, 608
Miran 1A, 23–24
Miran 80, 23–24
Mixer/loaders, 95–97
Moisture vapor transmission rate, 225
Molten metal, 475
cotton, flame retardant fabrics, 438
 protection against (see also specific fabrics)
testing fabrics, 476–486
 1000-g molten metal splash tests, 482–483
 1500-g molten metal splash tests, 481–482
 aluminized coats, 482
 apparatus with small induction furnace, 477
 application of results, 484–485
 blister line, 480
 complications, 476
 different metals, 484
 factors affecting splash test results, 478
 measuring results, 477–480
 method, 476
 preliminary testing, 480
 relating laboratory results to real world, 485–486
Molten metal (cont.)
testing fabrics (cont.)
time to burn and pain graph, 479

N
National Fire Academy, hand signals, 288
Natural latex gloves (see also Glove materials, testing against metal cutting fluids), 7, 10
chlorine permeation testing, 53-54
formaldehyde permeation, 53, 56
steady-state permeation rates, 13
Navy formula II, 511-512
Neoprene, 51
Neoprene gloves (see also Glove materials, testing against metal cutting fluids), 75-76, 79
Neoprene/natural rubber, permeation rate, 91
Neoprene suit materials, chlorine permeation testing, 53
NFPA (see National Fire Protection Association)
Nitrile-butadiene gloves, formaldehyde permeation, 53, 56
Nitrile-butadiene rubber, 51
Nitrile gloves (see also Glove materials, testing against metal cutting fluids)
variation in permeation resistance, 33
Nitrile rubber gloves, 7, 10, 75-76, 79
Nomex, 3, 389, 491, 495, 498
strength retention, 346-347, 349
Nomex/Kevlar, 340, 505, 507-509, 613

O
Olefin, spun-bonded, sorption, 146-147
Organic solvents, bioassay for glove performance, 214-219
exposure chamber, 216
materials and methods, 215-216

P
Paraquat, 114
Parathion, 114
Patch testing, protective effects of gloves, 70
Penetration, 126, 250, 263
defined, 178, 263-264
resistance (see Seams and closures, penetration resistance)
Penetration testing, 253-255
cell, 255
Percutaneous toxicity, 215
Permeability coefficient, 228
Permeation, 250
chemical protective clothing (see Chemical protective clothing, permeation resistance)
class, 243, 247-248
defined, 178
enhancers, 231
glove materials (see Glove materials, permeation measurement)
infrared spectroscopy (see Infrared spectroscopy, permeation tests)
rate, 7, 51, 229
closed systems, 86-87
dynamic system, 85
scale, 248
versus time plot, 88, 90-91
resistance, 32
Permeation testing (see also Breakthrough time; Data base, pro-
tective effects of glove materials; Glove materials; Work fabrics; specific types of clothing), 51-58, 82-92, 235, 254, 256-260
calculations, 84-85
chlorine permeation testing, 53
closed system calculations, 85-87
computer data base, 88-89
calculation medium versus time, 87
data flow sequence, 89
formaldehyde, 53, 56
graphical presentation of data, 87-88
hydrogen cyanide testing, 53, 55
limitations, 257
metal cutting fluids, 60-61, 63-64
nomenclature, 83-84
probe tip of photoionization detector, 257
problems when using ASTM Method F 739-81, 82-83
procedure, 52, 83
rate versus time, 88
steady-state rate, 256, 258
summary of data, 57
test apparatus, 258-259
whole glove, 256-257
Pesticides (see also California pesticide applicators’ attitudes and practices)
class, effect of on residues remaining after laundering, 169, 171
dermal exposure, 104
penetration (see also Fabric functional finishes, pesticide penetration), 140, 143-147
garment fabric, 143
garment fabric with sentinel pad, 144-145
influence of capillary forces, 137
outer garment fabric/undergarment fabric/dermal pad, 145-146
spun-bonded olefin/outer garment fabric/sentinel pad, 146-147
protective clothing, 95-101
field monitoring, 96-97
heat stress factor, 98-99
information dissemination to users, 100
need for laboratory evaluations, 99
need for more field testing, 98-99
standardized and practical methods, 100
working group, 98
resistance to, 609-610
secondary exposure, 103-104, 111
wetting, 140-142
wicking, 140, 142
work fabrics as barriers, 114-120
Pesticide spraying, protective clothing, 95-96, 121-134
analysis of samples, 124
breakthrough time measurement, 122-123
comfort of trial clothing, 133
contamination of spray operators, 124, 130
correlation between field and laboratory test results, 133-134
design of field studies, 127-130
laboratory evaluation of factors associated with protective efficiency, 131
observed contamination of operators’ clothing, 128
penetration of spray liquids through made-up clothing, 124, 132
permeation materials, 131-132
Pesticide spraying (cont.)
relative resistance of materials to penetration by liquid chemicals, 132
relative spray penetration of test clothing, 130-131
screening tests, 122–124
selection of protective clothing materials for field studies, 124–127
trial spray suits, 129
PFR rayon, 389
Phenol, contaminants after wash experiments, 19
Polybenzimidazole, 340, 349, 613–614
bulk density retention, 366–367
fabrics, thermal properties, 371–372
mass retention, 363
thickness retention, 365–366
Polybenzimidazole-blend fabrics, 389–403
acid derivation reduction, 391
chemical reaction, 390
chemical resistance, 393–395
comfort, 395–396
engineering protective fabrics, 396–403
burst strength, 398
char length, 399
contact heat testing time to ignition, 403
firemen’s protective apparel, 400, 402–403
foundry and fire proximity, 400–401
high-temperature gloves, 398–400
limiting oxygen index, 397
molten iron splash protection, 401
molten metal test apparatus, 401
random tumble pilling, 398
stiffness, 397
thermal protection performance, 402
flame resistance, 392
physical properties, 391
programed temperature thermogravimetry, 393
properties, 390
strength at elevated temperature, 394
tensile strength
after immersion in inorganic acids, 394
after immersion in inorganic bases, 394
after immersion in organic chemicals, 395
thermal stability, 392–393
Polychlorinated biphenyl, decontamination (see Fire fighter turnout gear, polychlorinated biphenyl decontamination)
Polyethylene-coated Tyvek, 51
chlorine permeation testing, 53
hydrogen cyanide permeation, 53, 55
Polyethylene terephthalate, solubility parameters, 199
Polymer glove materials, 59
Polymeric fabrics
effect of source temperature on absorptance, 345
heat flux absorbed, 344
Polyvinyl chloride, 51
encapsulated suits, storage of, 296
gloves, 7, 10, 219
steady-state permeation rates, 13
hydrogen cyanide permeation, 53, 55
Protection tests, 497
Protective clothing, 32, 103–112
as a hazard, 100
management programs, 236
physical requirements of materials, 57
Puncture testing, glove materials, 61–62

R

Radiant heat, 311, 327, 340
dominant wavelength, 345
flux, 421
protection against, 312–317, 330–331
amount of absorbed heat, 315
bilateral radiation interchange, 344
color effect, 435
correction factor, 315–316
heat sensors, 324–326
heat source, 312–314, 342
heat transmission factors, 313, 315
quartz and gas-fired panels, 315
specimen mounting, 316
test methods, 312
quartz-faced heater panels, 315, 343
Radiant heat protective clothing materials, 376–386
apparatus, 379–380
digital contact and air thermometer, 379
dynamic temperature measurements, 380–382
aluminum/wool, 385
nonwoven aluminum, 383
silicon/fiberglass, 384
emissivity, 378, 380, 382
Infrared radiation theory, 377–379
Infrared radiator, 379–380
Infrared thermometer, 379–380
radiated heat effect, 379
test results, 382–386
test rig, 380–381
Ranque Hilsch cooling effect, 548–549
Reflection index, 376
Resin finishes, 138
Risk assessment, 222, 235, 243
Risk/benefit analysis, 235
Risk information, 243–247

S

Saturated vapor pressure
determination of, 519–521
final solution, 521–522
Seams and closures, penetration resistance, 263–275, 611–612
experimental procedure, 264–269
cell sealant material, 267–268
sample garments, 267–269
seam constructions, 267–268
test apparatus, 265
test cell, 266
zipper construction, 268
penetration test results
butyl rubber, 272, 274
chlorinated polyethylene, 272, 274
copolymer of vinylidene chloride and vinyl chloride, 269–270
laminate of melted polypropylene, 271
microporous polytetrafluoroethylene laminated to a fabric, 272
plasticized polyvinyl chloride, 271–274
Viton elastomer, 272, 274
physical properties of liquid challenge chemicals, 275
Seepage, 294
Shale oil, glove permeation breakthrough times, 16
Silicon/fiberglass, dynamic temperature measurements, 384
Skin
 cross section, 223
 direct contact consequences, 237
 exposure, 207
 simulant, 340, 352–353, 406
 structure, 223–225
Soil release finish, 177, 180, 182
Soil-repellent finish, 136, 172–173
Solubility parameter, 32
 and hydrogen bonding class, 35
 correlation with permeation resistance, 36
 expression, 34
Sorption kinetics, adsorption fabrics, 46–48
Splash test, 475
Stoll curve, 475
Strength retention and ignition during exposure, 346–351
Styrene polymer production, chemicals found, 240

dynamic insulation characteristics, 542–546
heat balance equation, 549, 551–554
hot environment protective suit, 537–542
inlet air pressure and temperature interval, 551
moisture uptake and sweat heat loss, 552
physical properties of materials used, 542
Ranque Hilsch cooling effect, 548–549
sensible heat loss, 551
thermal conductance, of complete assembly, 546–548
total heat removal capability of air, 553
total heat to be removed from body in hot environmental work suit, 553
evaluating materials, 614–615
fabric characteristics (see also Fire fighter's turnout gear), 463–473
Derksen curve, 466–467
fabric specifications, 470
flammability, 465
heat protective properties, 465–466
ignition resistance, 465
moisture effects, 464
outerwear/underwear combinations, 469–471
single layers of fabrics, 467–468
thermal inertia, 464
thermal resistance, 464
time-heat relationship, 466
time to injury, 467, 469
total heat transmitted through uniform fabric/underwear combinations, 471
laboratory measurement of performance, 612–614

T

Tensile strength testing, glove materials, 62
Thermal injury, 358
Thermal protective clothing (see also Cotton, flame resistant, single and multiple layers)
dynamically insulated, 535–555
 air distribution system in, 542–543
 air flow and thermal conductance, 548
apparatus used for determining thermal conductances, 544
conductance of garment materials, 545
conductance of material assembly and predicted values, 545–546
defined, 537
duplex vortex tube, 550, 554
predicting performance, 358-374
- air and fiber conduction, 373-374
- air volume fractions of test fabrics, 362-363
- apparent thermal conductivity, 368
- average temperature, 370
- bulk density retention, 366-368
- flame-retardant cotton fabrics, 370-371
- infrared transmission, 368
- Kevlar fabrics, 371-372
- mass retention, 363-364
- materials, 359-360
- method, 360-361
- polybenzimidazole fabrics, 371-372
- polymer-to-air ratio, 373
- predicting thermal protective performance from initial properties, 372-373
- specific heat capacities, 368
- thermal properties, 368-370
- thermal protective performance traces, 361-362
- thickness retention, 364-366
- tolerance times, 362
- weight loss as function of exposure time, 361
- Thermal protective clothing fabrics, test methods (see also Lightweight clothing materials, heat protection), 311-339
- burn time, 334-336
- convective heat, 331
- exposure of materials to intense heat, 328-329
- fabric integrity, 336-337
- factors that influence burn injury, 328
- flames (see Flames, protection against)
- function, 327
- hole formation, 329, 335
- nature of intense heat hazard, 329, 330
- pain time, 334-336
- radiant heat, 312-317
- heat sensors, 314-316
- heat source, 312-314
- specimen mounting, 316
- relevance of test results, 337-338
- second-degree burn results, 335-336
- sensor response, 334
- skin stimulant sensors, 336
- Thermal protective performance rating, 491-494
- test, 358, 360, 487, 613
- Thermistor, 95
- Toluene, 214-215
- blood concentration with protective gloves, 217
- glove permeation, 7, 9, 11-15, 75
- glove thickness and density, 12-13
- radiolabeled tracer study, 13
- rate, 12
- Toxicity scale, 246
- 1,1,1-Trichloroethane, 214-215, 217
- Turnout coat (see Fire fighter's turnout gear)
- Two-chamber chemical permeation test cell, 61
- Tyvek, Saranex laminated, 277-278
- encapsulating suit, 279-280
- exhaust valves, 281, 284
- face piece materials, 277
- glove attachment, 281
- knee reinforcement, 279-280, 282
- limited-use garment, 285
- protection factor, 282-284
- recovery time, 283, 285
- suit weight and noise level, 281, 284
- ventilating vest, 280, 283
- layered structure, 278
- permeation data, 278
U

U.S. Navy protective clothing program, 497-512
fire pit tests, 500, 502-504, 507-510
body burn percentage versus total heat, 508
burn incidence for body regions, 509
burn level and paper tape activation temperature, 504
facility, 500, 503
individual total heat, 507
number of garments tested, 504
test mannikins, 500, 503-504
thermal shrinkage, 510
uniform design effects, 509
fire resistance, 499-505
flame impingement, 500-502, 505-507
temperature rise in skin simulant, 506
materials, 499
Navy formula II, 511-512
paper tape-leather patch calibration procedure, 512
total heat protection, 510
vertical flammability performance, 505

W

Vitom, 29

W

Water repellent finish, 177, 179-180
effect on barrier properties of fabrics, 182-185
Water vapor permeability, 151
Wetted cover, 515
evaporative heat loss from, 518-519
heat balance, 517

Wheeler's equation, modified form, 47
Wool, 405-419, 439
fabrics, 406
flame exposure, 408-413
air gap effect, 408-410
fabric construction and fiber type, 408, 411-412, 417-418
moisture effect, 412-413
repeatability and reproducibility, 412-413
heat protection, 468
melton, heat transmission factors, 313
molten metal splash, 413-416, 483
fabric construction and fabric type, 413, 415-416, 418
reproducibility, 413-414
physiological stress, 418-419
test methods, 407, 416-417
Work fabrics, as pesticide barriers, 114-120
Duncan's multiple range for disintegrations per minute, 118-119
pesticides tested, 115-116
protocol, 116-117
split-plot ANOVA table, 117
test fabrics, 115
test procedures, 115-117
two-way interactions, 117-118

Z

Zetex, 449, 614-615
abrasion testing, 454
development of safety clothing, 450-454
cut resistance, 451
glove design changes, 451
irritation problems, 450
glove testing, 451-454
molten metal testing, 454-459
aluminized, 458-459
apparatus, 455
average calorimeter temperature rise, 457
grading system for damage, 456–457
maximum rate of heat flow, 457
splash evaluation, 459
visual ratings, 456
properties, 450

Zippers
pressure sealing, 286
storage of, 295–296
testing seal, 294–295
Zirpro flame-retardant treatments, 405, 417–418, 439