Subject Index

A

Accelerators
Cockroft-Walton, 7
Van de Graaff, 7

AC impedance (See also Impedance)
computer-controlled measurements
for water penetration of anti-corrosion coatings, 374-385
methods, current needs, 216-217
mild steel corrosion induced by sulfate-reducing bacteria, 428-429
polarizing techniques in corrosion monitoring, 207-208

Acoustic emission
aluminum and steel alloys, high-strength, 35-36
active path corrosion and hydrogen embrittlement, fig., 52
amplitude distribution (See Amplitude distribution)
corrosion
304 austenitic stainless steel, 48
2024 aluminum alloys, 48
D16AT aluminum alloy, 47
detection in aluminum, 6
signals produced by, 82
corrosion fatigue
304 austenitic stainless steel, 61-62
A533B in simulated boiling water reactor environment, 68
carbon/manganese steel, 60
D6aC steel, 60

sources and relative energies in
Ti-6Al-4V, fig., 61
Ti-6Al-4V alloys, 60
TTStE36 steel, 61
corrosion processes
detectability, 31-36
principle, table, 34
crack growth processes and, 36
amplitude distribution function
for, 36-37
hydrogen-assisted, 166, 174-178
crack growth rate and, 68
during cracking, factors affecting, 45
electric currents and, 33-34
factors affecting, 33
field application, 40-41
film formation and cracking, 34
gas evolution, 34-35
hydrogen absorption and desorption, 47
hydrogen cracking, 35
hydrogen embrittlement in 4340 steel, 53-54
hydrogen migration/microcracking, 35
metal dissolution and, 34
monitoring in
during periodic proof testing, 41
high-strength aluminum and steel alloys, 35-36
stainless steel, 36
titanium alloys, 36
practical limitations, 45-46, 72
Acoustic emission (cont.)
results of corrosion, 37-40
 corrosion products, 38-39
cracks, 39
 effect of transducer and filter
 on, table, 80
Kaiser effect and, 37-38
 rough surfaces, 38
 thinning of metal, 38
 sources of, 69-71
stress application, 40
stress-corrosion cracking
 817M40 steel, 53
 897M39 steel, 53
Admiralty metal, 57
AISI 4340 steel, 53
aluminum alloys 7075-T651 and
 2024-T351, 77-83
aluminum and magnesium alloys, 57
 Al-Zn-Mg alloys, 55
brass, 57
 continuous monitoring of, 67
copper and copper alloys, 57
 D6aC steel, 53
detectability, 35
detection in industry, 84-87
 high-amplitude signals, 84-86
 low-amplitude signals, 86-87
high-strength steels, 52
mild steels, 52, 57
nickel maraging steel, 250
 grade, 54
signal differentiation, 82-87
 signals produced by, 82
stainless steels
 type 304, 50-51, 67
 type 316, 65
structural steel for blast furnace
domes, 68
titanium-zirconium alloys, 58-60
uranium alloys, 57-58
Acoustic energy, 304 austenitic stain-
less steel during polarization
 scan, 49
Activated carbon, corrosion potential,
table, 294
Admiralty metal, acoustic emission
during stress-corrosion cracking, 57
Aircraft
 aluminum corrosion, neutron ra-
diographic detection, 10-11
 fuselage, corrosion monitoring
 with portable ultrasonic
 imaging system, 92, 94
Aluminum
 aircraft, corrosion detection
 acoustic emission, 6
 neutron radiography for, 10-11
 half-value-layer for thermal neu-
trons, 13
 structure and composite honey-
comb, acoustic emission, 47
 wire in salt water, acoustic emis-
ion, 46
Aluminum alloys
 2024, acoustic emission during
 corrosion, 48
 7075-T6
 acoustic emission during corro-
sion fatigue, 60
 thermal neutron radiograph of
 HCL-treated beam, 10
 D16AT, acoustic emission during
 corrosion, 47
Aluminum-magnesium alloys, acous-
tic emissions
 hydrogen embrittlement, 57
 stress-growth cracking, 54-57
 transgranular cracking, 55
Ammeters, zero-resistance, in corro-
sion troubleshooting, 302
Amplitude distribution, acoustic emission
during stress-corrosion cracking in
 304 stainless steel, fig., 51
 sources during stress-corrosion
cracking or corrosion fatigue, fig., 66
Anaerobic corrosion
cathodic depolarization theory, 460-461
corrosion metabolite theory, 461-462
electrochemical noise and, 462-468
Anode-cathode potential difference, in occluded cell corrosion monitoring, 481
Apparent activation energy, carbon steel corrosion in NaOH solutions, table, 411
Armco iron, hydrogen-assisted crack growth, detection by modulus changes, 165-174
ASME Code Section XI, requirements for nuclear reactors, 113
ASTM Committee E-7, 1, 2
ASTM Committee G-1, 1, 2
ASTM Standards
A 53-78: 295
D 807: 210
D 993: 421
D 2776: 203
E 399: 53
G 1: 202
G 3: 290
G 4: 200, 202, 217
G 9: 375, 376, 377, 382, 383
G 30: 201
G 46: 201
G 59: 290
G 61: 290
Batch circulation treatments, efficiency, tracer studies, 253-255
Blast furnace domes, acoustic emission monitoring of stress-corrosion cracking, 68
Boilers, utility
2400-psig cycle, 340-341
analytical and monitoring methods, 349-354
boilerwater chemistry, 347-348
boilerwater limits, table, 348
cauistic damage in, 343-345
embrittlement detector for, 210-211
feedwater chemical control, 346-347
feedwater limits, table, 348
frequency of water analysis for, table, 354
hydrogen damage in, 343-345
inspection of, 355
nondestructive testing methods, table, 356
operation criteria tables
1001-1800 psig, 350
1801-2350 psig, 351
2351-2600 psig, 352
2601-2900 psig, 353
preboiler design, 341-342
tubing, ultrasonic detection of hydrogen damage, 27-28
warsides corrosion problems, 342-345
Boiling water reactor environments
acoustic emission from A533B corrosion fatigue in, 68
discrimination of acoustic emission signals in, 69
Boremag system, 103-105
Boresonic data acquisition system, 105-110
hardware and software, 105-110
mechanics, 108-110
ultrasonic evaluation, 107-108

Bacteria, sulfate-reducing (See Sulfate-reducing bacteria-induced corrosion)
Brass, acoustic emission during stress-corrosion cracking, 57

Bubbles
gas, bursting as source of acoustic emission energy, 34-35
hydrogen acoustic emissions, 69-70
evolution, acoustic emission energy, 48-49

Caustic embrittlement, in utility boilers, 343
Caustic gouging
in tube metal, fig., 345
in utility boilers, 343-345

Choke valve erosion, monitoring with portable ultrasonic imaging system, 94

Coal tar enamel, computer-controlled AC impedance measurements, 377-383

Computer data acquisition (See Data acquisition, computer-assisted)
Computer data processing (See Data processing, computer-assisted)

Cathode ray tube
ultrasonic thickness measurement,
conventional, 18
direct digital conversion, 19-20

Cathode-to-anode area ratio, in occluded cell corrosion monitoring, 481-484

Cathodic charging of Armco iron, changes in elastic modulus during, 167-174

Cathodic depolarization theory, 460-461

Cathodic protection

CuNi alloys, corrosion rate determination with harmonic impedance spectroscopy, 443-455
current response of electrode to voltage perturbation, 436-443

Caustic embrittlement, in utility boilers, 343

Caustic gouging
in tube metal, fig., 345
in utility boilers, 343-345

Choke valve erosion, monitoring with portable ultrasonic imaging system, 94

Coal tar enamel, computer-controlled AC impedance measurements, 377-383

Computer data acquisition (See Data acquisition, computer-assisted)
Computer data processing (See Data processing, computer-assisted)

Computer methods for corrosion monitoring, 217

Contaminants, crevice (See Crevice contaminants)

Cooling systems, corrosion control, 329-333

Cooling towers, uniform and pitting corrosion, inhibitor evaluation, 307-313

Copper
acoustic emission during stress-corrosion cracking, 57
ductile, chemical composition, table, 362
pipe, corrosion rate by drinkable water, 358-373
Copper alloys, acoustic emission during stress-corrosion cracking, 57
Copper-nickel alloy corrosion rate determination with harmonic impedance spectroscopy, 443-455
mass loss and harmonic current analysis, table, 455, 456
mass loss determination in seawater, table, 454
Corrosion acoustic emissions
304 austenitic stainless steel, 48
2024 aluminum alloy, 48
active path corrosion in steels, fig., 52
aluminum structure and composite honeycomb, 47
aluminum wire in salt water, 46
D16AT aluminum alloy, 47
electrode, 46-47
low- and high-frequency signals during, fig., 84
sources, fig., 45
anaerobic (See Anaerobic corrosion; Sulfate-reducing bacteria-induced corrosion)
anticorrosion coatings, AC impedance for water penetration, 374-385
bacterial (See Anaerobic corrosion)
carbon steel
in kraft white liquors, 270-273
in NaOH solutions, LiOH effect, 404-411
economic costs of, 5, 179, 237
frequency spectra for acoustic emission signals with broadband pass transducer filters, fig., 85
localized, current needs, 217
microbiological (See Anaerobic corrosion; Sulfate-reducing bacteria-induced corrosion)
occluded cell (See Occluded cell corrosion)
pipelines, economic costs, 459
pits (See under Crevice corrosion)
portable ultrasonic imaging system for, 89-101
potentials
304 stainless steel and activated carbon, table, 294
weld materials, table, 297
recirculating water, composition, table, 310
results of
and acoustic emissive behavior, table, 38
detection by acoustic emission, 37-40
Dunegan strategy, 37-38
sulfate-reducing bacteria-induced (See Sulfate-reducing bacteria-induced corrosion)
underwater steel structures, ultrasonic techniques, 179-189
focused transducer for thickness measurements, 181-184
system operation, 184-187
tests in harbor environment, 187
uniform, in cooling towers, 307-313
waterbox, rate determination with harmonic impedance spectroscopy, 433-436
water pipe, economic costs, 358
weld (See Welds)
Corrosion detection
advanced ultrasonic systems for, 19-27
neutron radiography in industrial environments, 13
Corrosion fatigue
acoustic emission during
304 austenitic steel, effects of
Corrosion fatigue (cont.)
304 austenitic steel (cont.)
 environmental and mechanical conditions, fig., 64
A533B in simulated boiling water reactor environment, 68
sources and energy levels drawn on amplitude distribution, fig., 66
sources during, fig., 45
detectability by acoustic emission, 35
in utility boilers, 345
Corrosion inhibition during oil production
corrosion monitoring loop, 253
electrical resistance probes, 260-261
film life of inhibitors, 258
film persistency wheel tests, 252
inhibitor concentration and percent protection, 255-258
linear polarization measurements, 252-253
linear polarization probes, 258-259
test procedure for, 263-265
tracer studies, 253-255, 261-263
Corrosion inhibitors
effective film life, 258
polyphosphates, in cooling towers, 307-313
Corrosion monitoring
AC impedance, 207-208, 216-217
computer methods for, 217
coupons, 201-203
current needs in, 216-217
dye penetrant examination, 205
eddy current techniques, 205
electrical resistance probe, 203-204
electrochemical methods, 197-218
electrical resistance probes, 241-245, 247-248
harmonic impedance spectroscopy in cathodically protected systems, 433-456
hydrogen probe, 208-209
linear polarization resistance probe, 238-241, 243-245, 248-249
oil production corrosion inhibitor optimization, 251-265
in power plant steam condensers and circuits, 214-337
for production-support corrosion engineering, 292, 297-298
rates in simulated Kraft white liquors, 266-287
leaks, problem of, 216
localized corrosion, 217
magnetic methods, 205
motivation for, 198-199
occluded cell (See under Occluded cell corrosion)
oil wellhead loop, devices, 253
packing glands on pressure vessels and, 216
polarization diagrams, 207
polarization resistance, 205-207
product stream analysis, 209-210
radiographic methods, 205
selection of method for, 199-201
sentinel holes, 210
standards for, 217
strategies in, 211-216
 monitoring location, 211-213
 redundancy, 214-215
 ultrasonic thickness data analysis, 214
stress-corrosion cracking, 210, 216
ultrasonic thickness measurements, 204-205
utility boilers, water and steam side, 339-357
weep holes, 210
wiring system problems, 215-216
Corrosion probes
 CISE high-temperature, schematic, 320
design problems of, 315–317
Corrosion products
 carbon steels in kraft white liquors, 280–281
detactability by acoustic emission, 38–39
hydrogen in, 9
neutron radiographic sensitivity to, 14
product stream analysis, 209–210
Corrosion rates
 carbon steels in kraft white liquors actual and predicted, table, 277
actual, comparison with electrical resistance-determined rates, table, 279
composition of anodic and cathodic Tafel slopes, table, 279
corrosion characteristics, 270–273
corrosion products, 280–281
electrical resistance, 269–270, 278, 287
linear polarization, 269, 273–278, 287
reference electrode for potential measurements, 270
weight loss exposures, 270
cast iron pipe by drinkable water, 358–373
in cathodically protected systems, harmonic impedance spectroscopy, 433–456
copper pipe by drinkable water, 358–373
steam condensers, on-line monitoring, 214–337
Corrosive metabolite theory, 461–462
Coupling current in steam condenser, characteristics, 322, 324–325
Coupons, corrosion monitoring with, 201–203
Crack growth
 in high-strength steel and aluminum alloys, 36
hydrogen-assisted, 165–178
acoustic emission measurements, 174–178
detection procedure, 167–168
modulus measurements, 168–174, 177
process and terminology, fig., 55
processes, emission amplitudes, 36
rate and acoustic emission energy, relationship, 68
in high-strength low-alloy line pipe steel, table, 399
secondary, in high-strength low-alloy line pipe steel, kinetics, 395–399
Cracking
acoustic emission during, factors affecting, 45
hydrogen embrittlement, detectability by acoustic emission, 35
intergranular, detected acoustic emission event counts and fig., 54
stress-corrosion (See Stress-corrosion cracking)
transgranular, acoustic emission during propagation in Mg-Al alloy, fig., 55
Crack jump, acoustic emission and, 70
Crack nucleation, hydrogen-assisted, 165–174
Cracks
detectability by acoustic emission, 39
microcracks in hydrogen-attacked steel, 162
Crack tip, dissolution kinetics in
high-strength low-alloy line pipe steel, 399–401
Crevice contaminants, sensor for, 138–154
design and manufacture, 139–140
field evaluation, 144–151
laboratory testing, 140–144
Crevice corrosion
eddy current technique for pits, 124–136
amplitude-distance parameter, 128
approach, 126–127
calculated and experimental results, comparison, 131–135
experimental data, 130–131
field-strength pattern, 127–128
field width determination, 131
influence function, 131
inverse problem, 136
lift-off parameter determination, 131
model testing, 130
response derivation, 128–129
factors affecting, fig., 474
mathematical modeling of, 484
occluded cell monitors, design, 472–489
C-scan, and Ultra Image III, comparison, 99–100

Data processing, computer-assisted ultrasonic thickness measurements, 24–27
calibration of, 26–27
coverage maps, 25–26
recording data on magnetic tape, 26
tables, 26
Decarburization, hydrogen-attacked steel, 162
Decontamination processes, corrosion rates, 333–336
Desulfovibrio desulfuricans, 418, 423, 427, 460–461
Dunegan strategy, 37–38

E

Eddy current technique
for corrosion pits, 124–136
amplitude-distance parameter, 128
approach, 126–127
calculated and experimental results in, 131–135
experimental data, 130–131
field strength patterns, 127–128
field width determination, 131
influence function, 131
inverse problem, 136
lift-off parameter determination, 131
model testing, 130
response derivation, 128–129
factors affecting, fig., 474
mathematical modeling of, 484
occluded cell monitors, design, 472–489

D

Data acquisition, computer-assisted boresonic system, 105–110
hardware and software for, 105–106
inspection system methodology, table, 105
mechanics, 108–110
ultrasonic evaluation, 107–108
ultrasonic thickness measurements, 20–24
Electrical resistance, carbon steel in kraft white liquors
accuracy of corrosion rate measurement, 286–287
corrosion rate determination, 278
measurement procedure, 269–270
Electrical resistance probes
advantages of, 243–245
comparison with linear polarization resistance probes, 245
corrosion monitoring with, 203-204
data plot from, fig., 203
instrumentation for, 245-247
oil production, comparison with corrosion coupon results, table, 260
principles, 241-243
probe selection, 247-249

Electric current, detectability by acoustic emission, 33-34
Electric power plant crevice contaminants, sensor for, 138-154
Electrochemical methods for corrosion monitoring (See specific methods)

Electrode
corrosion, acoustic emission, 46-47
potential, hydrogen content as function of, 226-229

Embrittlement detector, for cracking of boiler steels, 210-211
Enzyme-linked immunosorbent assay, for sulfate-reducing bacteria detection, 419
Erosion, portable ultrasonic imaging system for
in seawater pipeline, 91-93
inside a choke valve, 94

Film
formation and cracking detectability by acoustic emission, 34
for neutron radiography
fluorescent screens of gadolinium oxysulfide, 7
images, thermal neutron exposures for, 8
metal screens of gadolinium, 7
Film persistency wheel tests, inhibitor performance, 263
Fluorescence antibody technique, for sulfate-reducing bacteria detection, 418-419
Fractography, high-strength low-alloy line pipe steel, 392-393
Fusion bonded epoxy, computer-controlled AC impedance measurements, 377-383

G
Gadolinium metal screens, 7-8
Gadolinium oxysulfide fluorescent screens, 7

Galvanic current, density for A 53 pipe and E6010 weld deposit agitation effect, fig., 299
pipe-to-weld area ratio effect, fig., 299
weld materials coupled to A 53 steel pipe, fig., 299
Gas
bubbles (See Bubbles)
evolution, detectability by acoustic emission, 34
Gouging, caustic, in utility boilers, 342-345

H
Half-value-layer for thermal neutrons
aluminum, 13
stainless steel, 13
water, 9
Harmonic impedance spectroscopy, corrosion rates in cathodically protected systems, 433-456
Hydrogen
absorption and desorption, acoustic emission during, 47
Hydrogen (cont.)
attack (See Hydrogen attack in steels)
attenuation of slow neutrons, 6, 9
content, \(K_{\text{SCC}} \) as function of, measurement with hydrogen probe, 229–230
content of mild steel, measurement with hydrogen probe, 226–229
in corrosion products, 9, 12
cracking
in 4340 steel, acoustic emission, 36
detectability by acoustic emission, 35
Hydrogen attack in steels
attacked wall thickness and wave ratio, fig., 161
effect on wave velocity, 154
quantitative evaluation with ultrasonic velocity technique, 153–164
thickness evaluation, longitudinal wave velocity and, 155–158
ultrasonic wave velocity method, experimental results, table, 159
Hydrogen damage
brittle corrosion failure, fig., 343
in boiler tubing
progress of, 27–28
ultrasonic detection, 27–28
in utility boilers, 343–345
Hydrogen embrittlement in steels, acoustic emission during, 52–54
Hydrogen/methane process in boiler tubing, ultrasonic detection, 27–28
Hydrogen probe
apparatus description, 222–223
\(\text{CO}_2 \) absorption tower in ammonia synthesis, 230–231
detection limits, 233–234
hydrogen content as function of electrode potential, 226–229
hydrogen monitoring of line pipe, 231–234
\(K_{\text{SCC}} \) as function of hydrogen content, 229–230
measurement procedure, 223–226
use in corrosion monitoring, 208–209

I
Imaging
physical and ultrasonic, comparison, table, 122
ultrasonic, automated technique for intergranular stress-corrosion cracking detection, 112
Impedance (See also AC impedance) measurements for sulfate-reducing bacteria detection, 419–420
Industrial environments
acoustic emission detection of stress-corrosion cracking in, 84–87
corrosion control, main methods for, 238
neutron radiography applicability, 13
standards for corrosion monitoring in, 217
Inspection, automated, nuclear power plant piping/weld systems, 112
Intergranular stress-corrosion cracking
304 stainless steel, acoustic emission response during, 65–67
automated ultrasonic detection technique, 112
imaging technique, 117–122
search head design, 114–117
boiling water reactor environment, acoustic emission response discrimination, 69
nuclear power plants, acoustic emission monitoring, 65
simulated boiling water reactor environments, acoustic emission monitoring for, 44
Iron phosphide, anaerobic corrosion and, 462
Iron sulfide, anaerobic corrosion and, 461

K
Kaiser effect, 37–38
Kraft white liquors, carbon steel corrosion rates in, 266–287
electrical resistance measurements, 269–270, 278, 286–287
linear polarization measurements, 269, 273–278, 287

L
Leaks, in corrosion monitoring systems, 216
Linear polarization
AISI 1020 steel, inhibitor performance, 252–253
carbon steel in Kraft white liquors corrosion rates determination, 273–278
errors due to liquor oxidation effects, 286
measurement procedure, 269
resistance, 315
resistance ratio, 316, 319
uniform and pitting corrosion rates in cooling towers, 307–313
Linear polarization resistance probes advantages of, 243–245
comparison with electrical resistance probes, 245
instrumentation for, 245–247
oil production corrosion, 258
principles, 238–241
proper probe selection, 247–248
Lithium hydroxide, effect on carbon steel corrosion in NaOH solution, 404–411

M
Magnesium–aluminum alloys (See Aluminum–magnesium alloys)
Magnetic particle examination (See Boremag system)
Metal dissolution, detectability by acoustic emission, 34
Microcalorimetry, sulfate-reducing bacteria detection with, 420
Moderator, neutron, 7
Moderator-collimator approach, to neutron radiography, 7
Monitoring devices, location of, 211–213

N
Neutron radiography
corrosion detection methods, 7–12
neutron-sensitive intensifying screens, 7
sensitivity of, 12
film for, 7–9
in industrial environments, 13
moderator-collimator approach, 7
neutron-attenuating materials and, 13
real-time, screens for, 7–8
sensitivity to corrosion products, 9–12
sources, 7
accelerator, 7
CF-252, 7, 10, 13
television-type detection methods, 14
thermal
HCL-treated aluminum beam, fig., 10
typical geometry for, fig., 9
Neutrons
classification according to energy, table, 8
cold, for neutron radiography, 7, 13
slow, attenuation by hydrogen, 6, 9
thermal
half-value-layer (See Half-value layer for thermal neutrons) for neutron radiography, 7
Nickel oxyhydroxide, hydrogen probe plating with, 222
Noise
anaerobic corrosion and, 465–468
electrochemical, 462–463
sources, in acoustic emission field applications, 40
Nondestructive testing methods (See specific methods)
Nuclear power plants
acoustic emission and stress-corrosion cracking in, 65
eddy current technique for crevice corrosion pits, 124–136
piping system, automated ultrasonic detection of intergranular stress-corrosion cracking in, 112
Nuclear reactors (See Nuclear power plants)
O
Occluded cell corrosion
design criteria for monitoring anode-cathode potential difference, 481
cathode-to-anode area ratio, 481–484
gap dimensions, 479–481
mathematical modeling of crevices, 484
rate process in, 478
thermodynamic factors affecting, 474–478
monitoring device, 210
in-plant monitors, 486–487
laboratory devices, 485–486
Oil production, corrosion inhibitor optimization, 251–265
electrical resistance probes, 260–261
field measurements
corrosion monitoring loop, 253
tracer studies, 253–255
film life of inhibitors, 258
film persistency wheel tests, 252
inhibitor concentration and percent protection, 255–258
linear polarization measurements, 252–253
linear polarization probes, 258
test procedure for, 263–265
tracer studies, 261–263
Open-circuit potentials, for sulfate-reducing bacteria-induced corrosion, 422–423
Operator skill
in acoustic emission field applications, 40
in computer-assisted ultrasonic data-processing, 26–27
P
Phosphonate dispersants, 310–313
Piezoelectric sensors, acoustic emission amplitudes measured by, 69
Pipe
A 53 steel, weld corrosion-induced failure, 295-302
copper-nickel, corrosion monitoring with portable ultrasonic imaging system, 94
line, hydrogen monitoring with hydrogen probe, 231-234
in nuclear reactors, automated ultrasonic detection of intergranular stress-corrosion cracking, 112
seawater, corrosion monitoring with portable ultrasonic imaging system, 91, 93
water
cast iron and copper, corrosion rate by drinkable water, 358-373
corrosion costs, 358
Pipeline coatings (See Coal tar enamel; Fusion bonded epoxy; Polyethylene)
Pipe (See Pipe)
Pipelines (See Pipe)
Pitting
acoustic emission during, 47
corrosion
eddy current technique for, 124-136
in utility boilers, 343-345
failure of stainless steel tank, troubleshooting, 291-295
potentials, sulfate-reducing bacteria and, 425-426
rates in cooling towers, calcium phosphate effects, 307-313
underwater
focused transducer technique of thickness measurements, 181-187
traditional inspection methods, 180
Plastic strain effects
hydrogen absorption, 228-229
K_{Hec} and hydrogen content, 229-230
Poisson's ratio, hydrogen-attacked steel, estimation by ultrasonic wave velocity ratio, 162-163
Polarization
curve and acoustic emission count rate, in 304 austenitic stainless steel, fig., 49
galvanostatic and potentiostatic, for sulfate-reducing bacteria detection, 423-425
Polarization diagrams, in corrosion monitoring, 207
Polarization resistance
corrosion monitoring with, 205-207
mild steel corrosion induced by sulfate-reducing bacteria, 426-429
Polyethylene pipeline coating, computer-controlled AC impedance measurements, 377-383
Polymers, synthetic, 310-313
Potentiodynamic polarization
curves for stress-corrosion cracking in high-strength low-alloy line pipe steel, 390
for pitting corrosion rates
cooling water towers, 308-309
oil fields, 258
pulp and paper plants, 269, 273-278
uniform and pitting corrosion rates in cooling towers, 307-313
Potentiostatic polarization, AISI 1020 steel in seawater contaminated by sulfate-reducing bacteria, fig., 426
Power plants
cycles, construction materials, table, 342
ture corrosion rate, on-linear monitoring, 314-337
wall thinning in, 28
Pressure vessels, packing glands on, 216

Probes
- electrical resistance (See Electrical resistance probes)
- electrochemical (See Linear polarization resistance probes)
- hydrogen (See Hydrogen probe)

R

Radiography
- conventional, 6
- neutron (See Neutron, radiography)

Radioisotopic techniques, for sulfate-reducing bacteria detection, 420-421

Redundancy, in corrosion monitoring programs, 214-215

Resistive thermal device, calibration
- field tests, 147
- laboratory, 143

Rough surfaces, detectability by acoustic emission, 38

S

Scanning electron microscopy
- stress-corrosion cracking in high-strength low-alloy line pipe steel, 392-393
- sulfate-reducing bacteria detection, 416

Sensor for real-time crevice contaminant detection, 138-154
- calibration of conductivity electrodes, 148
- calibration procedures, 147
- design and manufacture, 139-140
- field equipment development, 144-147
- field evaluation, 144-151

field installation, 149
- flowing steam tests, 143-144
- integrity tests, 148-149
- mechanical testing, 143
- probe evaluation and data analysis, 149-151
- resistive thermal device calibration, 143, 147
- room temperature calibration, 141-142
- steam environment calibration and testing, 142-143
- test bed for, 144

Sensor placement, in acoustic emission field applications, 40

Sentinel holes (See Weep holes)

Shear modulus, hydrogen-attacked steel, estimation by ultrasonic wave velocity ratio, 162

Slow-strain rate technique, for stress-corrosion cracking of line pipe steel, 387, 389-390

Sodium hydroxide, carbon steel corrosion in, 404-411

Stainless steel
- 304
 - acoustic emission during corrosion, 48
 - during corrosion fatigue, 61-62
 - effects of environmental and mechanical conditions during corrosion fatigue, fig., 64
 - hydrogen-assisted growth detection by, 174-178
 - monitoring, 36
 - during polarization scan, 49
 - during stress-corrosion cracking, 50-51, 65-67
 - corrosion potential, table, 294
 - pitting failure troubleshooting, 291-295
- 316, acoustic emission during stress-corrosion cracking, 65
410 (martensitic), hydrogen assisted growth detection by acoustic emission, 174-178
430 (austenitic), hydrogen assisted growth detection by acoustic emission, 174-178
half-value-layer for thermal neutrons, 13
Standards, for corrosion monitoring in industrial plants, 217
Steam condensers, on-line corrosion measurements, 318-329
Steam turbine crevice contaminants, sensor for real-time detection of, 138-154
Steels
414 high-strength low-alloy line pipe, stress-corrosion cracking, 386-402
483 high-strength low-alloy line pipe, stress-corrosion cracking, 386-402
817M40, acoustic emission during stress-corrosion cracking, 53
897M39, acoustic emission during stress-corrosion cracking, 53
A 53 pipe (See Pipe)
AISI 1020, linear polarization measurements, 252-253
AISI 4135, K_{isc} as function of hydrogen content, measurement with hydrogen probe, 229-230
AISI 4340, acoustic emission during hydrogen embrittlement, 53-54
carbon
A515, corrosion potential and hydrogen content measurement with hydrogen probe, 231
corrosion in NaOH solution, LiOH effect, 404-411
corrosion rate as function of corrosion potential, fig., 326
corrosion rates in Kraft white liquors, 270-281
hydrogen-attack evaluation, 153-164
Poisson's ratio, 162-163
shear modulus, 162-163
Young's modulus of, 162-163
carbon/manganese, acoustic emission during corrosion fatigue, 60
D6aC, acoustic emission during corrosion fatigue, 60
during stress-corrosion cracking, 53
hydrogen-damaged, detection, 27-28
low alloy, hydrogen-attack evaluation, 153-164
mild
acoustic emission during stress-corrosion cracking, 57
hydrogen content measurement with hydrogen probe, 226-229
nickel maraging (250 grade), acoustic emission during stress-corrosion cracking, 54
plate in heavy water, corrosion monitoring with portable ultrasonic imaging system, 94
stainless (See Stainless steel)
TTStE36, acoustic emission during corrosion fatigue, 61
Steel structures, underwater, ultrasonic corrosion monitoring technique, 179-189
Stress, thermal, in acoustic emission monitoring, 40
Stress-corrosion cracking
304 stainless steel, acoustic emission during, 50-51, 67
316 stainless steel, acoustic emission during, 65
817M40 steel, acoustic emission during, 53
Stress-corrosion cracking (cont.)
897M39 steel, acoustic emission during, 53
2024-T351 aluminum alloy
acoustic emission monitoring, 81-82
and corrosion acoustic emission signals, differentiation, 82-87
7075-T651 aluminum alloy
effect of transducer and filter on acoustic emission results, table, 80
velocity measurements, acoustic emission monitoring, 77-78
acoustic emission
low and high frequency signals during, fig., 84
sources and energy levels drawn on amplitude distribution, fig., 66
sources during, fig., 45
active path, detectability by acoustic emission, 35
Admiralty metal, acoustic emission during, 57
AISI 4340 steel, acoustic emission during, 53
aluminum and magnesium alloys, acoustic emission during, 57
Al-Zn-Mg alloy, acoustic emission during, 55
amplitudes distribution function for, 36-37
brass, acoustic emission during, 57
caused by crevice contaminants, sensor for real-time detection, 138-154
continuous-monitoring of acoustic emission, 67
copper and copper alloys, acoustic emission during, 57
current monitoring needs, 216
D6aC steel, acoustic emission during, 53
detection in industry, 84-87
discontinuous, detectability by acoustic emission, 35
frequency spectra for acoustic emission signals with broad-band pass transducer filters, fig., 85
high-strength low-alloy line pipe steel, 386-402
intergranular (See Intergranular stress-corrosion cracking)
metals, acoustic emission during, 47
mild steels, acoustic emission during, 57
nickel maraging steel (250 grade), acoustic emission during, 54
process streams, device for, 210
structural steel for blast furnace domes, acoustic emission during, 68
uranium alloys, acoustic emission during, 57-58
utility boilers, 343
velocity, acoustic emission rate and, 76
Sulfate-reducing bacteria-induced corrosion
cathodic depolarization theory and, 460-461
cellular components unique to, 421-422
corrosive metabolite theory of, 461
detection by impedance measurements, 419-420
enumeration, 414-416
galvanostatic methods, 423-425
immunological detection, 418-419
microcalorimetric detection, 420
microscopic detection, 416-417
open circuit potential measurements, 422-423
pitting potentials, 425-426
INDEX

polarization resistance measurements, 426–429
potentiostatic polarization methods, 423–425
radioisotope techniques for, 420–421
sulfide determination, 421
Sulfide ion, detection for bacterial sulfate reduction, 421

T

Television-type detection systems, 14
Thermodynamics, occluded cell corrosion, 474–478
Thickness (See also Thinning)
computer-assisted data acquisition system, 20–22
computer-assisted measurement system, 22–27
data acquisition subsystem, 23–24
data processing subsystem, 24–27
hydrogen damage in boiler tubing, 27–28
conventional examination methods, shortcomings, 28–29
conventional ultrasonic measurements of, 17–18
printer for measurement of, 19–20
ultrasonic measurements
corrosion monitoring with, 204–205
data analysis, 214
underwater, focused transducer technique for, 181–187

Thinning
detectability by acoustic emission, 38
wall, measurement of, 28–29
Titanium alloys, acoustic emission monitoring, 36
Titanium–aluminum–vanadium alloy, acoustic emission during corrosion fatigue, 60–62
Titanium–zirconium alloys, acoustic emission during stress-corrosion cracking, 58–60
Tomography, Ultra Image III image formation and, 100
Tracer studies, oil wellhead, corrosion inhibitor program, 253–255, 261–263

Turbine rotors
boremag system, 103–105
boresonic data acquisition system, 105–110
mechanics, 108–110
ultrasonic evaluation, 107–108

U

Ultra Image III (See Ultrasonics, portable imaging system)

Ultrasonics
advanced systems, 19–27
data acquisition subsystem, 23–24
data processing subsystem, 24–27
thickness data acquisition system, 20–22
thickness measurement system, 22–23
thickness printer, 19–20
automated data acquisition and evaluation system
boremag system, 103–105
boresonic mechanics, 108–110
boresonic system, 105–108
implementation, 107–108
inspection system methodology, table, 105
automated technique for intergranular stress-corrosion cracking detection, 112
Ultrasonics (cont.)
conventional, 17–18, 28–29
with focused transducer, for under-
water corrosion of steel structures, 179–189
system operation, 184–187

technique for thickness mea-
surements, 181–184
tests in harbor environment, 187
imaging, and physical imaging,
comparison, table, 122
portable imaging system
accuracy of image, 100
in airplane fuselage, 92, 94
analyzing power of, 93
applications for, 91–93
corrosion/erosion in seawater
pipeline, 93
corrosion in airplane fuselage,
92, 94
corrosion in seawater pipeline,
91–92
C-scan comparison with, 99–100
description and calibration, 90–
91
equipment and calibration, 90–
91
erosion inside choke valve, 94
for large areas, 92–93
in seawater pipeline, 91–93
steel plate in heavy water pro-
cessing plant, 94
tomographic image formation,
100
welded region of copper nickel
pipe, 94
pulse-echo methods, 6
resonance methods, 6
thickness measurements, corro-
sion monitoring with, 204–
205
wave velocity ratio method for hy-
drogen attack in steels, 153–
164

Uranium alloys, acoustic emission
during stress-corrosion crack-
ing, 57–58

V
Voltammogram, cyclic, carbon steel
corrosion in NaOH solutions,
406–409
Voltmeters, high-impedance, in cor-
rosion troubleshooting, 302

W
Water
analysis frequency for utility boil-
ers, table, 354
chemistry in power plants, 319–
333
chemistry monitoring in utility
boilers, 349–355
drinkable, effect on corrosion rate
of cast iron and copper pipe,
358–373
halv-value-layer for thermal neu-
tron radiographic beam, 9
penetration of anticorrosion coat-
ings, 374–385
pipe (See under Pipe)
Wave velocity
ratio method for hydrogen-at-
tacked steels, 153–164
shear and longitudinal, in hydro-
gen-attacked steel, fig., 157
Weep holes, in corrosion monitoring,
210
Weld
corrosion, troubleshooting tech-
niques, 295–302
inspection, automated ultrasonic
technique for, 112
materials, corrosion potentials, ta-
ble, 297
Wheel tests, inhibitor performance, 263
Wiring systems, corrosion monitoring systems and, 215–216

X-Z
X-rays and slow neutrons, attenuation characteristics, fig., 7

Young’s modulus
changes in, detection of hydrogen-assisted crack growth by, 165–178
hydrogen-attacked steel, estimation by ultrasonic wave velocity ratio, 162
Zirconium-aluminum alloys (See Aluminum–zirconium alloys)