Subject Index

A
Absorptance, surface, thermal effect, 457-458
Absorption, water, 717
Active measurement strategy, thermal performance of walls, 92-93, 94(table), 96-97(Tables)
Adsorption, water, 717
Aerial thermography, 176, 178, 181-185
Air barrier, discussion, 625
Air change rates, Corry Field units, 386(Tables)
Air conditioning, 14-20, 560
Air exchange rates, domestic houses, 606(Table)
Air film resistance, 570
Air flow, 154, 158, 171
Air flow requirements for energy efficiency, 12, 545
Air flow visualization, 171
Air gap systems, 46
Air handler installations, 14, 15(fig.)
Air infiltration (see also Air leakage)
measurement by tracer gas, 175-176
of building envelope, 124, 125(fig.)
Air infiltration tests, 377
Air layer, 283-286
thermal conductivity versus thickness, 290(fig.), 291
Air leakage
building envelope, 34, 36, 38
field tests, 644
infiltration tests by tracer gas, sulfur hexafluoride, 377
R value accuracy limitations, 213
simulated
experimental procedure, 642
test apparatus, 640, 641(fig.)
Air leakage reduction (see also Insulating materials)
cellulose wall insulation, 639
insulating materials, flow rate, 643(table)
modular retrofit experiment, 647
retrofit, 645(table), 648
standards development
control requirements, 34, 36-37
infiltration, 32-33, 124
thermal transmittance, 683(fig.)
thermographic inspections, 180
wood frame walls, 405
Air movements, thermal performance of building envelope, 124
Air permeability, 125
Air pressure changes, face wall, 127
Air space R values for Hi-Hat wall system, 727(table)
Air temperature, 573
Air thermal conductivity, 287
Airtightness, 679, 680(fig.)
building envelope, 124-125(fig.), 128-129, 616
heat loss reduction, 647
pressure versus air flow measurements, 644
Alarm systems, pressurized monitoring of conduit, 47
Alkalinity, underground pipe systems, 44-45
Alumino-silicate fibers, test specimens for radiation heat transfer, 687
Aluminum jacketing
corrugated, vapor barrier design, 74
engineered specifications, 84
on foamed polyurethane insulation, 74, 77-79
Ammonia storage tanks, foam insulation systems, 80
Annual energy budget and usage, 16-18, 19(table), 20
Antifreeze protection, heat-traced systems, 85
Apparent thermal conductivity, 518, 522-523(table), 533(table)
Application procedure checklist, thermal insulation materials, 87-88
Army buildings, energy conservation, 214-216
Asphalt, thermal conductivity, 271(table)
ASHRAE handbook procedure, heat loss factor, 134-135
Asphalt's
application to foam test specimens, 438
roofing insulation, 434

733
ASTM Committee C-16 on thermal insulation, summary of approach on standards for burn hazard potential, 705

ASTM standardization work
proposed standard test method for thermal performance of building components, 718–719
standards development, uniform definition of human burn hazard, 709

ASTM standards (see also Standards)
C 76-82: 508
C 177-76: 108, 494, 588, 651, 656, 686
C 201-68: 68
C 202-71(1977): 687
C 236-80: 297, 310, 311, 326, 346, 508, 509, 567, 652, 724, 728
C 518-64T: 653
C 518-70: 651
C 518-76: 423, 478, 494, 521, 527, 656
C 518-80-80: 311
C 578-83: 520
C 653-70: 655
C 653-83: 652
C 680-82: 709, 710
C 755-73(1979): 75
C 976-82: 323, 346, 508, 567, 583, 586
C 1055-86: 709, 710
C 1057-86: 709, 711
D 9-81: 251
D 95-83: 436
D 226-82: 434
D 245-81: 251
D 250-84: 434
D 312-78: 434
D 1079-83a: 432
D 1165-80: 251
D 2126-75: 524
D 2395-83: 251
D 2555-78: 247, 251
E 84-84: 73
E 96-80: 74-75, 464, 716
E 230-83: 319
E 331-83: 378, 389
E 398-83: 463
E 741-83: 377
E 799-81: 644

ASTM Subcommittee C08.05, round robin analysis for ceramic fiber insulation, 686
Attic air humidity ratios, 631, 632(fig.), 636(fig.)
measured and predicted, 634, 635(fig.)
Attic insulation, 210–213, 213–215(figs.)
field tests, 217–218, 494–500
standard deviations and means, 502, 503–504(tables)

impact on indoor formaldehyde concentrations, 231–232, 235
loose-fill, densities, 495
low levels, 637
test module, 716, 717(fig.)
Attic ventilation, 635
guidelines, 637
Average computed conductivity, comparison of mean data, 248(table)

B
Backfilling, 46
Balance point temperature, 554
Balloon frame construction, air leakage reduction after wall insulation retrofit, 644
Basement air leakage, 644
Basement wall/floor heat loss, 132
climatic sensitivity, 142(fig.)
Washington, DC, 136–138(figs.), 144–151(appendix tables)

Beadboard insulation (expanded polystyrene, EPS), 422, 518
Biguauged thermal hot plate, 286
Birch, thermal conductivity, 268–269(table)
BLAST (see Building Loads Analysis and System Thermodynamics)
Blistering, built up roofing membranes, 432–433, 447
Block-molded polystyrene insulation, exposure studies, 524–529, 534, 582, 588, 589
Blower-cyclone-shaker (BSC) test, 500, 501(table, fig.)
Blown-in loose-fill insulation, 199
BOCA (see Building codes)
Bubbling phenomenon
application of hot asphalt, 438
roof insulation, 433, 440, 443, 446
Building codes, 721
Florida model energy efficiency code for building construction, 9, 12, 14-15, 20
Building component characteristics, ASTM test methods for evaluation, 713
Building component performance, domestic houses, 607
Building components, test development simulators, 717
Building component thermal, resistances, 179
Building design for energy efficiency, 14, 15(table)
Building design requirements and trade-off approaches, 29
Building design thermal insulation, 679
Building diagnostics, 179
Building energy requirements, 341
Building envelope, 29, 639
 air infiltration, 124, 125(fig.)
 air leakage control, 34, 36–38
 air movements, 124
 air permeability, 125
 BLAST program, 544
 defects, 310, 680
 openings for electrical installations, windows, doors, ventilation, etc., 682
design, 238
 energy requirements, 341
 exterior of office buildings, thermal resistance, 107
heat flow test procedures, 110–113
heat loads/gains, 203
heat loss, 179, 317
 high-solar-gain house, 545
office buildings, 107
pressurization tests for measuring tightness, 175
use of thermal insulating materials, 477
Building heat transfer, 154, 156, 169
Building Loads Analysis and System Thermo-dynamics (BLAST), 542, 544
Building materials, moisture performance, 616
Building performance optimization, 21–22
code compliance, 9, 29–34
energy analysis procedure, 27–28, 35–36, 341
parameter selection and analysis, heating and cooling, 28
Building Research Association of New Zealand, 94
Buildings
 heat transfer characteristics, masonry cavity wall, 319
 moisture problems, 371
U.S. Army, R values, field investigations, 203
 use of thermography to rank heat loss characteristics, 178
Building thermal analysis, 203–210
 heat loss calculations, 132
Building types
 army, 205(tables)
 for energy calculations, 12, 13(table)
Built-up roofing/insulation specimens, delamination, 437, 443, 444
Built-up roofing membranes, 432
Burn hazard evaluation, 704–711
design conditions, 710
potentials, 705
Burn potential for heated surfaces, 711
Burn protection, 704

C
Calcium carbonate fill, treated in insulating envelope system, 48
Calcium silicate pipe insulation, 46
Calibrated hot box (see also Hot box), 163, 319–325, 346
design considerations, effect of environment, 358
testing, 582, 584(fig.)
 test apparatus, 585(fig.)
vapor barrier, 615
Calibration, 576, 653–654, 658
instrumentation development, 659
Calibration constant versus thickness, R-Matic instrument, 660(fig.)
Calibration specimen, 577(fig.)
Calorimeter analysis, comparison between four and twelve data points, 694
Calorimeters, 175, 567, 569(fig.), 572
 air temperature, 573
design, 573–575
 heat flux, 119–120
 portable, 108, 109(fig.)
water, 686
Calorimeter test data
ceramic fiber round robin, 690
thermal conductivity versus mean temperature, 698(fig.)
Carrier pipes, cement, 47
Cavity walls, 319
 heat transmission characteristics, 339
Cedar, thermal conductivity, 249(table), 268–269(table)
Ceilings
 air leakage, 213
Ceilings (cont.)
code requirements, 23(fig.)
heat loss due to missing insulation, 120, 180
insulation, 610, 644
 retrofit, 646
resistance variations, cause of differences in surface temperatures, 178
 standards development, 29, 36
Cellular glass insulation, 48
Cellular plastic insulation, 421, 422–423, 432, 582, 720
Cellular polyurethane, 71
Cellulose insulation
 air leakage reduction, 643
Cellulose insulation (cont.)
- density test, 495-498
- new construction applications, 642
- settling test (BSC test), 500
- spray-applied laboratory/field tests, 362-366, 367(table)

Cellulose wall insulation
- effect on leakage, 644, 646(table)
- retrofit reducing air leakage, 647

Cementitious coatings, vapor barrier design, polyurethane foam insulation, 74

Centre de Recherches Industrielles de Ranthigny (CRIR), 161, 284

- heat flux transducer, 656

Ceramic fiber insulations, heat transfer, 689

Ceramic fiber round robin, test results, 687, 690

Chlorosulfonated polyethylene (CSPE) mastic, 464

CH₂O (see Formaldehyde)

Climate-heating-cost (CHC) parameters, U.S. Army energy savings program, 218

Climatic conditions
- cold climate studies, 406
- effects on heat loss, Mitalas systems for calculating, 134-135, 144-151(table)
- influence of airtightness and thermal insulation, 679

Climatic sensitivity, basement wall/floor heat loss, 142(fig.)

Closed-cell cellular glass (Foamglas) insulated heat distribution systems, 43-44, 48

Coatings
- cementitious, 74
- for insulated concrete, 45-46, 48

Code compliance procedures, 9, 29-34

Code requirements, comparative assessment, 23-24(figs.)

Cold climate studies, 406
- moisture levels
 - in test wall panels, 415(fig.)
 - in wood frame walls, 411, 413(table)

Cold Regions Research and Engineering Laboratory (CRREL), 422, 428

Cold weather condensation hazard, 615, 625

Combustible cellular plastic thermal insulation, 720

Commercial construction, model energy code compliance procedures, 9, 29-34

Computer model description, TARP program, 542, 550, 565

Concrete
- cavity walls, 319
 - temperature and relative humidity, 379, 390
 - in insulating envelope system, 48

Concrete block cavities, influence on moisture movement, 379, 382, 383(table), 390

Concrete block wall, uninsulated, thermal resistance, 594-596(table)

Concrete block wall with drywall laminate system, thermal resistances, 594-595(fig.)

Concrete block wall with exterior, insulated finishing system, thermal resistances, 589, 593-594, 596(table), 597

Concrete masonry walls, 582

Concrete sewer tile for pipe conduits, 48

Condensation, 371, 395, 397
- attics, 633
- wood-frame walls, 405, 406

Condensation hazard, 615
- decay, 406
- discussion, 625

Condensation potential, metal window frames, 572

Condensation studies
- conclusions, 416
- data acquisition/recording, 410-411
- moisture levels, 407, 411, 412, 413(table)
- results, 411
- test methods/structures, 407
- experimental structure, 408(fig.)
- R values, wall panels, 409(fig.)

Conductance, 284-285, 290, 567

Conductive/radiative heat transfer, 210, 284-285, 290, 639

Conductivity of wood, North America, major research, 280

Conduit systems
- alarm systems, 47
- factory fabricated, 47-48
- field fabricated, 47-48
- pressurized monitoring, 47
- underground pipe insulation, 46

Consensus standard test methods, 713

Conservation of energy
- army buildings, 214-216
- energy efficiency, 639
- engineered specifications, 82

Construction materials (see also Wall system installation), 588

Construction specifications, federal agencies, underground heat distribution systems, 43

Contact burn potential, from heated surfaces, 711

Convection, 284, 570, 572
cold air in attics, 210–211, 213, 214–215(fig.), 219
from solar wall ducts, 606
natural, 205, 209–210
Convection heat transfer
forced convection, 572
hot box measurement, 347–349, 395
formulas, 349–354
wet mineral wool insulation, 399
Cooling (see Heating and cooling)
Cooling load, 14–18
comparison of measured/predicted, 548–549(figs.)
Copper pipes, 47
Corrosion cracking, insulated stainless piping, engineered specifications, 86
Corrosivity, soil criteria for design of underground pipe systems, 44–45
Corrugated aluminum jacketing, vapor barrier design, polyurethane foam insulation, 74
Corry Field housing units
air change rates, 386(table)
moisture problems, 372
Cost-effectiveness, 599
Counterflow insulation systems (see also Dynamic insulation applications
France, residential houses, 153
Scandinavia, industrial building roofs, 153
efficiency, 153, 154
testing experiments, temperature measurement, 165–168(figs.)
Cracking, corrosion, 86
CRIR (see Centre de Recherches Industrielles de Rantigny)
CRREL (U.S. Army Cold Regions Research and Engineering Laboratory), 422, 428
CSPE (chlorosulfonated polyethylene) vapor retarder mastic, 464
Cypress, 268–269(table)
thermal properties, 238–252, 252–253(table)

D
Data acquisition, condensation, 410–411
Data base design methodology, 239, 277–282
thermal properties of wood
data analysis, 277–278
experimental data, 240
DBR (Canadian Division of Building Research) calorimeter design, 573–574, 575(fig.)
DBR wall calorimeter, comparison with window calorimeter, 576
Decay, condensation in wood frame walls, 406
Delamination
built-up roofing/insulation specimens, 437, 443, 444
roofing membranes, 432
Delsante solution, slab-on-grade heat loss calculations, 132, 134
Density
ceramic fiber round robin, 689(table)
conducitivity correlation, 251, 277
loose-fill attic insulation
measurement in situ, 496, 497–499(tables)
variations with time, 497
thermal properties of wood, standard deviation of mean, 243(table)
Department of Defense (DOD), energy conservation investment program (ECIP), 214
Design criteria, underground piping systems, 44–45
Dew point/dry bulb temperatures, 379
Domestic dwellings
air exchange rates, 606(table)
building component performance, 607
design, 599–600
energy requirements, 607
Doors, standards development, 29, 36
Double glazing, 610
Double vapor barrier, 615
Douglas fir, thermal conductivity, 262(table)
Draft barriers, 86
Drainage patterns, underground pipe systems, 44–45
Drainage tests, 377, 386, 387(table)
Drywall installation, 588
TGIF and Z-furring, 720
Drywall laminate system, 589, 594–595, 597
Durability, insulating mineral fibers, 477
Dynamic flow of moisture, equation, 633
Dynamic insulation (see also Counterflow insulation systems)
experiments
test apparatus, 161–162
test wall, 162–163
measurements, 163
parietodynamic insulation, air circulating along wall, 154, 155(fig.)
permeodynamic insulation, air circulating through mineral wool as a heat exchanger, 154, 160
temperature measurement, 166–169
theoretical efficiency, equations, 154, 156–161
Dynamic insulation (cont.)
thermodynamic insulation, air circulating
independent of ventilation system,
154-156
Dynamic performance, 449
Dynamic response
behavior, long-term monitoring, 607
wall thermal performance, 91-92, 94-98,
99(table), 100
Dynamic tests
test procedures, temperature cycles, 328
test results, 329
Dynamic thermal performance, 94-100
Dynatech R/D Co., R-Matic heat flow meter,
659

E
Earth contact systems
heat loss factor, 134-135
Mitalas heat loss calculations, 132-134
applied to U.S. climate, 143
Earth temperature, climatic conditions in
U.S., 134-135
ECIP (see Energy conservation investment
Program)
Economic analysis, 214-216, 216(table)
procedures, modeling parameters, 34
EERS (see Equipment energy efficiency
ratios)
Elastomeric coatings, polyurethane foam,
vapor barrier design, 74
Elastomeric membrane, 422
Electrical installations, cause of building
envelope penetrations, 682
Electrical resistance of wood, 617
Electric resistance heating, heat tracing
medium, 85
 Elm, thermal conductivity, 267(table)
Emission rates, formaldehyde, 224
Emmissivity, 284, 287, 291
effect on heat loss, 84
EMTL (see Energy Materials Testing Labora-
tory)
Energy analysis calculations
building types, 12-13
parameter selection and analysis, heating
and cooling, 28
Energy analysis/performance criteria, 27-28,
30-36, 341
Energy audits, 179, 339
Energy balance equation, 323-324
Energy code compliance procedures for deter-
mining efficiency
building performance, 9
design standards, 9
point value system, 9
Energy codes, resulting in wide use of energy
analysis methods, 31
point system approach, 31
systems analysis approach, 31-32
Energy conservation, 582, 639
analysis procedure, 34
army buildings, 214
consumption reduction, 713
test apparatus and test methods, 662
cost savings, 652
counterflow insulation systems, 154-172
effective specifications, 82
glazing, 14
improvement, U.S. Army, 214
optimization parameters, 26-28, 35
roofing systems, 431, 432, 449
thermal insulation, 69
Energy efficiency ratios, equipment, 20
Energy Materials Testing Laboratory
(EMTL), 535
Energy performance standards, prescriptive
approach, 29
Energy requirements, 21, 338-339
building envelope, 341
domestic houses, 607
Energy savings
extra insulation, 610
solar house versus typical house, 607
solar wall, 608
thermal insulation, 69
Trombe-type solar wall, 608, 611
U.S. Army, 218
Energy savings measures
cost effectiveness, 610
domestic dwellings, 599
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Technology Support Unit (ETSU), U.K. Department of Energy, 600</td>
</tr>
<tr>
<td>Energy transfer processes, modeling parameters, 34</td>
</tr>
<tr>
<td>Energy usage calculations, 10-11</td>
</tr>
<tr>
<td>Engineered specifications, 84-88</td>
</tr>
<tr>
<td>applications procedures, checklist, 87-88</td>
</tr>
<tr>
<td>corrosion cracking, 86</td>
</tr>
<tr>
<td>energy conservation, 82</td>
</tr>
<tr>
<td>expansion and contraction, 84-85</td>
</tr>
<tr>
<td>Envelope systems, insulating underground pipe, 46, 48</td>
</tr>
<tr>
<td>Envelope thermal test unit (ETTU), 92, 93(fig.), 94-97</td>
</tr>
<tr>
<td>Environmental chamber tests, 224, 225-229</td>
</tr>
<tr>
<td>Environmental criteria, temperature and humidity, 535</td>
</tr>
<tr>
<td>Epoxy-lined cement carrier pipes, 47</td>
</tr>
<tr>
<td>EPS (expanded polystyrene) foam sheathing insulation, 422-423, 582, 588, 589</td>
</tr>
<tr>
<td>Equipment energy efficiency ratios (EERS), 20</td>
</tr>
<tr>
<td>Equivalent leakage area (ELA), increased after ceiling insulation retrofit, 646</td>
</tr>
<tr>
<td>Equivalent radiative thermal conductivity, 667, 668</td>
</tr>
<tr>
<td>Error analysis, heat transfer measuring techniques, 355-357</td>
</tr>
<tr>
<td>ETSU (see Energy Technical Support Unit)</td>
</tr>
<tr>
<td>ETTU (see Envelope thermal test unit)</td>
</tr>
<tr>
<td>Evaluation procedure, building components, 713</td>
</tr>
<tr>
<td>Evaporation, 397</td>
</tr>
<tr>
<td>Expanded polystyrene (EPS) insulation, 422, 518</td>
</tr>
<tr>
<td>Expansion and contraction, engineered specifications, 84-85</td>
</tr>
<tr>
<td>Expansion chambers, 45</td>
</tr>
<tr>
<td>Expansion of piping, design considerations for underground systems, 44-49</td>
</tr>
<tr>
<td>Experimental error, air flow measurement, 545</td>
</tr>
<tr>
<td>Exposure study, EPS materials, 582, 588-589</td>
</tr>
<tr>
<td>experimental details, winter temperature/humidity conditions, 524-529</td>
</tr>
<tr>
<td>roof insulation tests, 428</td>
</tr>
<tr>
<td>Exterior envelope, 107</td>
</tr>
<tr>
<td>Exterior insulated finishing system, 592</td>
</tr>
<tr>
<td>External relative humidity, 616</td>
</tr>
<tr>
<td>Extinction coefficient, 665, 670(fig.), 671</td>
</tr>
<tr>
<td>Extruded EPS sheathing, 588, 590, 592</td>
</tr>
<tr>
<td>Extruded polystyrene sheathing, 518, 615</td>
</tr>
<tr>
<td>exposure study, winter conditions, 528, 534</td>
</tr>
<tr>
<td>moisture control performance, 625</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face wall, air pressure changes, 127</td>
</tr>
<tr>
<td>Family housing, moisture problems, 371</td>
</tr>
<tr>
<td>FCC (see Federal Construction Council)</td>
</tr>
<tr>
<td>FCC guide specification, Section 15705, underground heat distribution systems, prefabricated/preengineered type, 44</td>
</tr>
<tr>
<td>FCGS (see Federal construction guide system)</td>
</tr>
<tr>
<td>Federal Construction Council (FCC) (see also National Academy of Sciences/National Research Council, FCC technical reports), 43</td>
</tr>
<tr>
<td>Federal construction guide system (FCGS), 43-44</td>
</tr>
<tr>
<td>Federal Interagency Group, 44</td>
</tr>
<tr>
<td>Felt, built-up roofing insulation, 443</td>
</tr>
<tr>
<td>Fenestration</td>
</tr>
<tr>
<td>annual energy usage, 18(table)</td>
</tr>
<tr>
<td>solar, energy calculations, 11</td>
</tr>
<tr>
<td>Fiber batt insulation, new construction applications, 642</td>
</tr>
<tr>
<td>Fiberboard sheathing, 412</td>
</tr>
<tr>
<td>Fiberglass blowing wool, new construction applications, 642</td>
</tr>
<tr>
<td>Fiberglass insulation</td>
</tr>
<tr>
<td>spray-applied, 360</td>
</tr>
<tr>
<td>effect of moisture, 362-364</td>
</tr>
<tr>
<td>unbonded loose-fill, 310</td>
</tr>
<tr>
<td>Fiberglass reinforced plastic pipe, 47</td>
</tr>
<tr>
<td>Fiberglass wall insulation, 197</td>
</tr>
<tr>
<td>Fibrous glass insulation, 223-224</td>
</tr>
<tr>
<td>ceiling insulation, 236(table)</td>
</tr>
<tr>
<td>formaldehyde emissions, 224-227, 236</td>
</tr>
<tr>
<td>impact on indoor formaldehyde concentrations, 230-231</td>
</tr>
<tr>
<td>Fiber insulation</td>
</tr>
<tr>
<td>heat transfer, 689</td>
</tr>
<tr>
<td>mass scattering coefficient versus temperature, 672(fig.)</td>
</tr>
<tr>
<td>Fibrous insulation material, 394, 665, 674(fig.)</td>
</tr>
<tr>
<td>equations derived from radiation-conduction heat transfer, 666-668</td>
</tr>
<tr>
<td>mass scattering coefficient, 671</td>
</tr>
<tr>
<td>model, equation, 668</td>
</tr>
<tr>
<td>optical behavior model, 669</td>
</tr>
<tr>
<td>Fibrous loose-fill insulation, quality control instrument for determining thermal resistance, 655</td>
</tr>
<tr>
<td>Fick’s law to describe formaldehyde transport, 233</td>
</tr>
<tr>
<td>Field-fabricated systems, not pressure testable, 48</td>
</tr>
</tbody>
</table>
Field experiments, effect of moisture in spray-applied fiberglass insulation, 363-366
Field measurement
attic insulation retrofit, 217-218
heat loss in underground systems, 63, 66
Field studies, 615
space heating/cooling loads, effect of wall mass, 541
Field tests, 108
attic insulation, 210-213, 213-215(figs.)
heat flow through building envelopes, test procedures, 110-113
Fills for insulating concretes, 49
Filter coefficients, wall surfaces, 95
FIP polyurethane foam (see Polyurethane foam insulation)
Fire protection, polyurethane insulation systems, 73
Fireplaces, air leakage standards development, 7
Fir, thermal conductivity, 259(table)
Floors
basement heat loss calculations, 132, 142
comparative assessment of code requirements, 24(fig.)
insulation, 610
Florida model energy efficiency code for building construction, 9, 12, 14-15(table), 20
Flow for retrofit, insulating materials, 644(table)
Flow of water into wood, model, 633
Fluid mechanics of air leakage, 639
equation, 640
Foamed polyurethane insulation, 47
Foamed-in-place (FIP) polyurethane insulation, 71-73
Foamglas, 43-44
Foam insulation, 432
storage tanks, 80
Foam service life, 463
Foam sheathing, 405, 422-428, 582, 588-589
test methods/structures, 407
Foam test specimens, application of asphalt, 438
Footing, water leakage, 387, 390
Forced convection (see Convection heat transfer)
Forest Products Laboratory, Madison, Wisconsin
research on condensation in walls, 406
Formaldehyde (CH₂O)-based resins, 223-227
Formaldehyde concentrations, indoor attic insulation model, 235
diffusion model, 230-231
impact of fibrous glass insulation, 230
Formaldehyde emission measurements, 225-236
Formaldehyde surface emission monitor (FSEM), 224-225, 236
Formaldehyde transport model, equations, 233-235
Formaldehyde vapor permeability data, 232(table)
Fourier transforms, passive and active wall fluxes, 100-104(figs.)
Fothing, polyurethane foam, 72, 434, 440
FSEM (see Formaldehyde surface emission monitor)
Fuel consumption, annual, computer program, 8
Fuel energy program, calculation procedures, 12
Full-scale thermal testing, 161-171, 583-586
Furring wall system installation, 588

G

Gases, analysis of, in roofing blisters, 437, 444
Glass fiber insulation, 223-224
cellular, 48
conductivity increased with moisture, 361-362
correlation between thickness, density, and temperature, 674(fig.)
laboratory/field experiments, 362-366
reinforced polyisocyanate test construction, 721-722
Glass fibers, 154, 163, 477
Glazing
considerations for energy efficiency, 9, 14
double, 610
standards development, 29
Ground-based infrared thermography, 176-177, 180
Ground drainage tests, Corry Field housing units, 377, 386, 387(table)
Groundwater conditions
Corry Field housing units, 377
soil criteria for design of underground pipe systems, 44-45, 52
Guarded hot box, 506, 567, 571-572
design considerations, effect of environment, 358
imbalance analysis, 357(fig.)
principles of operation, 299
test measurements, 305, 311
test results for wall systems, 724-725(table)
tests of thermal resistance, wall construction components, 720–721
verification for thermal properties measurement, 297, 346
Guarded hot plate, 286(table), 287
apparatus, 288(fig.), 292
ceramic fiber round robin test data, 691(table)
evaluating thermal performance of insulations, 652, 686
heat transfer testing, 395
measurements on wet material, 397–398
performance, 302–303
thermal conductivity versus mean temperature, 697, 698(fig.)
Gypsum wallboard, 582

H
Hardwoods, thermal conductivity, 240–241
Hazard potential
from heated surfaces, 705
human exposure limits, 705
Heat and humidity, effect on inorganic insulating fibers, 477
Heat distribution systems, manholes, 45, 50
Heated surfaces, hazard potential, 704
Heat exchange, between test specimen and guarded hot box, equations, 571–572
Heat exchange coefficients, 307
Heat flow, 108
mineral fiber insulation, 394, 399
surface to surface temperature difference, 402(fig.)
versus temperature difference, glass fiber, 403(fig.)
Heat flow meter, 175, 652–653, 654(fig.)
future needs, 662–663
historical development, 659
instrumentation, Dynatech R/D Co., 659
schematic, 658(fig.)
standards, 656
Heat flow meter apparatus, product performance, 661
Heat flow resistance
in situ measurement, 120
insulation air space leak testing, 48
Heat flow test procedure, 110–113
Heat flux
density, 668
dynamic performance of wall, 92
measurement, 94
dynamic test results, 332–334(figs.)
thermal resistance of office building walls, 112–120
versus temperature difference, 289(fig.)
Heat flux calorimeter, 108, 119–120
Heat flux sensors, 203, 207–208
calibration, 205–208
conversion factors, 208
Heating and cooling, energy analysis, 28
Heating and cooling equipment, 28
Heating and ventilation systems, solar houses, 604(fig.)
Heating load correlations
comparison of predicted/measured, 546–547(figs.)
masonry walls, 556(table)
wood frame walls, 554, 555(table)
Heat load, 11, 14–15, 203
roof U values, 17(table)
wall U values, 16(table)
Heat loss, 679
basement walls and floors, 132
building envelope, 179, 317
heat loss eliminated from, 317
calculations, Mitalas system, 132–134, 134–135
design characteristics, 600
due to missing insulation, 120
effect of emissivity, 84
in situ measurement, 52, 63, 108
insulation, permeodynamic systems versus conventional insulation systems, 171
office buildings, 108
reduction by airtightness, 647
scale model test results, pipe systems, 64–65(tables)
thermal analysis, 132
thermography, 178
underground heat distribution systems, in situ measurement, 52–53, 63
Washington, DC, Mitalas system, basement walls/floors, 136–138(figs.), 144–151(tables)
Heat loss coefficients, domestic houses, 604, 605(table)

Heat loss factors
earth contact systems, 134–135
Mitalas system, full basement, Washington, DC, 144–151(appendix table)
Heat pump
roof systems, 450
versus electric strip heating, 28
Heat sink, 397
Heat storage capacities, cavity walls, 341
Heat tracing mediums, 85
Heat transfer
 characteristics, 319
 conductive/radiative, 169-171, 210, 284, 639
 convection, 572
 infrared inspection techniques, 178-179
 masonry cavity wall, 319
 measurement, 94-105, 169, 355-357
 mineral fiber insulation, 399
 model, 94, 156
 radiative, 208-209, 219, 284, 292
 wall thermal performance, 92-98, 129
Heat transfer behavior, low-density thermal
 insulation, instrument design, 656
Heat transfer calculations, 597
Heat transfer coefficients, 307(table), 570
Heat transfer energy, 666
Heat transfer factors, basement and slab
 floors, 143
Heat transfer from phase changes, 395-396
Heat transfer model, 666
Heat transfer properties
 BLAST program, 544
 high-solar-gain house, 545
 typical house, 545(table)
Heat transfer reaction, source of high energy,
 707
Heat transfer through fiber insulation, 689
Heat transfer U values
 equations, 569-572
 windows, 567
Heat transmission, 160-162, 311, 582
 characteristics, cavity walls, 339
 coefficients, 325-326
 mechanisms, 652
 windows, 568
Hemlock, thermal properties, 260-261(table)
High-solar-gain house, 542, 545
 heat transfer properties, 545
 reduction in space cooling loads, 562(table)
 reduction in space heating loads, 560, 561(table)
High-temperature optical parameters, 665
High temperature tests, 685
Hi-Hat system
 air space R value, 727(table)
 R value comparisons, 726(table)
 test constructions, 722(fig.)
Hot box method (see also Calibrated hot box)
 measuring technique, 346
Hot box tests, 507
 measured thermal performance, 514(table)
Hot, humid climates
 moisture levels in test wall panels, 412, 415(fig.)
 moisture problems in family housing, 371-393
Hot plate and heat flow meter, 654
Hot plate, thermal biguarded, 286
House heat loss coefficients, 604
Housing construction details
 London, Ontario, 619(table)
 Regina, Saskatchewan, 619(table)
 St. John’s, Newfoundland, 620(table)
 Winnipeg, Manitoba, 618(table)
Housing units, field studies of moisture, 372
Human burn protection standards, 704
Human skin burns, contact resistance, 708
Humidity
 effects on inorganic insulating fibers, 477
 effects on mineral fibers, 477
 environmental criteria, 535
 testing for moisture problems, 375, 379, 381(table)
Humidity ratios, 630, 632(fig.)
Hydrocarbon fill, granulated, insulating envelope systems, 48-49
Hygric experiments, 449, 458
Hyperthermia, 705
 effects on human skin, 706

I
ICBO (see Building codes)
Imbalance detection, heat transfer measurement, 354-357
Indoor air quality, 223
Indoor concentrations of formaldehyde, 223-237
Industrial roof insulation, Sweden, 153
Infiltration
 air, in building envelope, 124, 176
 cause of air leakage, 32
 standards development for energy efficiency, 29, 34
 tests, 377
Inframetrics infrared unit, 197
Infrared imaging system, 177
Infrared inspection techniques, 178-179
Infrared scans, walls, 197
Infrared surveys, 175, 180-185
Infrared thermography
 applications, 176-177, 203
 field investigations, army buildings, 205
 review of insulated surfaces, 88
 wall inspection, 197
Infrared thermometer (see Spot radiometer)
Inorganic mineral fibers, durable for insulating applications, 477
Inside surface temperatures, 572

In situ insulation thickness and density, 495-496, 497-499(tables), 500

In situ measurement
- heat flow through composite walls, 120
- heat loss, 52, 63, 108
- *R* value measurement, 203, 209
- thermal performance
 - building envelope, 107-108
 - walls, 91-105,

Inspection procedures, exterior envelopes of office buildings, 177

Inspection program, wall insulation, installation, 200

Installation and backfill, underground piping, 45-46

Installation problems, workmanship, 680

Instruments development, calibration, 659

Insulated concrete, 45-46

Insulated heat distribution systems, field investigations, 43

Insulated stainless steel piping, 86

Insulated underground piping systems, 45-49

Insulated wall systems, measured thermal resistance, 592, 593(table)

Insulating concretes, 49

Insulating envelope systems, 48

Insulating materials and systems
- air leakage properties, laboratory measurements, 639
- pressure drop versus air flow, 642(fig.)
- thermal resistances, 582

Insulating mineral fibers, 477

Insulation *(see also Counterflow insulation, Dynamic insulation)*, 679, 685

- air leakage reduction, 639
- attics, 637
- building envelope, 680
- ceilings, 610
- cellular glass, 48
- cellular polyurethane, 71
- cellulose, 362-367
 - density, 495-498
 - settling tests, 500
 - density, 495-498
- effect of moisture, laboratory experiments, 362-363
- gaps, 313-314
- heat transfer reduction, 639
- impact on thermal resistances, 597
- wall systems, 588
- moisture trapped in vapor barrier, 401
- polyurethane foam, 71, 74, 431
- protected membrane roofs
 - laboratory tests, 423-425
 - wetting behavior, 428, 429

Insulation configurations, basement wall/floor heat loss, Mitalas system, 144-151(appendix tables)

Insulation densities, 495

Insulation efficiency, of polyurethane foam, 71, 73

Insulation for energy efficiency, 9-16

Insulation for stainless steel surfaces, engineered specifications, 86

Insulation materials
- ceramic fiber round robin, 686
- fiberglass, 197
- new products, laboratory testing, 316
- protective finish, 83-84
- retrofit, 643(table)
- selection criteria, 70-71, 83, 87-88
- testing for new construction
 - cellulose, 642
 - fiberglass batt, 642
 - vermiculite, 642

Insulation panels, engineered specifications, 86

Insulation retrofit, 218

Insulation R values, 515(table)

Insulation specifications, 82

Insulation specimens, roofing, 437, 443-444

Insulation systems
- application method, polyurethane-banded aluminum jacket, 78
- banded tanks, 78
- design objectives, 70, 73, 87
- energy-saving thermal insulation, 70
 - ceilings, walls, floors, double glazing, 610
- parietodynamic, 154-155
- permeodynamic, 154, 160
- polyurethane foam coatings/coverings, 73
- fire protection, 73
- shortcomings, 73
- spray-applied fiberglass, 310, 360, 367-369
- thermodynamic, 154-156
- unbonded loose-fill fiberglass, 310

Insulation thickness, 45, 652
- primary means of energy conservation, 83

Interior insulation system, 593

Interlaboratory comparison, 685

Interlaboratory reproducibility
- mean temperature versus thermal conductivity, 699(table)

quality control instrument design, 655

quality of installation, 196, 314

standards development, 29, 36

retrofit, 202-220, 643, 646

thermal performance measurement, 652

ceilings, 644

wet mineral wool, 399

Insulation configurations, basement wall/floor heat loss, Mitalas system, 144-151(appendix tables)

Insulation densities, 495

Insulation efficiency, of polyurethane foam, 71, 73

Insulation for energy efficiency, 9-16

Insulation for stainless steel surfaces, engineered specifications, 86

Insulation materials
- ceramic fiber round robin, 686
- fiberglass, 197
- new products, laboratory testing, 316
- protective finish, 83-84
- retrofit, 643(table)
- selection criteria, 70-71, 83, 87-88
- testing for new construction
 - cellulose, 642
 - fiberglass batt, 642
 - vermiculite, 642

Insulation panels, engineered specifications, 86

Insulation retrofit, 218

Insulation R values, 515(table)

Insulation specifications, 82

Insulation specimens, roofing, 437, 443-444

Insulation systems
- application method, polyurethane-banded aluminum jacket, 78
- banded tanks, 78
- design objectives, 70, 73, 87
- energy-saving thermal insulation, 70
 - ceilings, walls, floors, double glazing, 610
- parietodynamic, 154-155
- permeodynamic, 154, 160
- polyurethane foam coatings/coverings, 73
 - fire protection, 73
- shortcomings, 73
- spray-applied fiberglass, 310, 360, 367-369
 - thermodynamic, 154-156
- unbonded loose-fill fiberglass, 310

Insulation thickness, 45, 652
- primary means of energy conservation, 83

Interior insulation system, 593

Interlaboratory comparison, 685

Interlaboratory reproducibility
- mean temperature versus thermal conductivity, 699(table)
Interlaboratory reproducibility (cont.)
thermal conductivity versus mean temperature, 700(fig.)

International Refrigeration Institute, round robin test, 654

Jacketing, aluminum (see Aluminum jacketing)
Jacket seam
bonded aluminum jacket on foamed insulation, 80
design testing, 74
permeability, 74
polyurethane insulation, 74, 78-79
Joints, 679

Laboratory experiments, spray-applied fiberglass insulation, effect of moisture, 362-363
Laboratory measurement, 567
Laboratory tests, protected membrane roof, 425
Larch, thermal conductivity, 263(table)
Leakage flow rate, insulation materials, 643(table)
Leak testing, insulation air space, 48
Lighting loads, for energy calculations, 12
Loose-fill attic insulation, 493, 495
Loose-fill cellulose
blower-cyclone-shaker (BSC) test, 500
wall insulation, 197, 199
Loose-fill thermal insulation, 494
Low-energy dwellings, design, 599
Low-frequency weather fluctuations, 103
Low-permeance foam sheathing
moisture content, discussion, 625
versus other types of sheathing, 615
Low temperature
design objectives for insulation systems, 70, 78-80
storage tanks, thermal insulation, 70, 76, 79

Maintenance, design criteria for tank insulation systems, 70
Manholes
design and maintenance, 50
pumping facilities and venting, 45
Maple, thermal conductivity, 270(table)
Masonry, moisture problems in family housing, 371-372
Masonry cavity walls, 319
thermal response, 341
Masonry securement systems, test constructions, 721-724
Masonry wall constructions, 582
heating load correlations, typical house, 554
Mass absorption coefficient (see Absorption coefficient)
Mass scattering coefficient (see Scattering coefficient)
Material degradation, thermal insulating mineral fibers, 477
Materials
factors affecting choice, 83
insulation systems, 71
application procedure checklist, 88
types of materials, 83
Mathematical models
data reduction, ceramic fiber round robin, 702(appendix)
roof thermal performance, 449
Mean temperature
comparison of averages of all water calorimeter and guarded hot plate tests, 702(table)
versus thermal conductivity
calorimeter tests, 698(fig.)
guarded hot plate tests, 697(fig.)
Mean values
thermal properties of wood
density, 243, 247(tables)
moisture content, 244(table)
thermal conductivity, 240-242(tables)
use increasing design reliability, 280
Measuring techniques (see also Active measuring strategy)
heat transfer, 355-357
hot box method, 349-354
tracer gas, 175, 176
Measurement/error analysis, 209
Mechanical properties of EPS materials,
 exposure study, winter conditions, 524-529, 531(table)
Mechanical stress, in foam insulation systems, 75
equations, 76
Membrane blistering, roofing systems, 432
Metal jackets, securement, 84
Metallic jacketing, 84
Metal window frames, condensation, 572
Metal Z-furring channel system, 590, 591(fig.)
Metering box
 heat transfer coefficients, 307
 space temperature difference behavior, 304(fig.)
Metering chamber calibration, 584
 temperature ranges, 586, 594
Mildew, on walls and furnishings, 371, 379
Mineral fiber bats, quality control instrument for thermal resistance, 655
Mineral fibers, 154
 material disintegration, 480(table), 482-484
 thermogravimetric analysis, 477
Mineral wool
 insulation, 399
 material degradation, 477
 wet thermal resistance, 396
Mitalas equations
 basement model, 133(fig.)
 climatic conditions, U.S. weather stations, heat loss calculations, 132-134
 Washington, DC, 144-151 appendix tables
Model building codes, 720
Model energy code compliance, 9, 29-34
Model, flow of water into wood, 633, 637
Modeling, 630
Modeling parameters
 development of energy transfer processes, 34
 dynamic performance of a wall, 92
Modular retrofit experiment, 647
Module simulator, 713, 714(fig.)
Module testing, 713, 715(figs.), 716
 versus ASTM proposed standard test method for thermal performance of building components, 718-719
Moisture
 concrete block cavities, 379, 382, 383(table), 390
 condensation studies, test methods/structures, 407
 desorbed
 from roof sheathing, 632
 from wood, 633
 dynamic flow, 633
 effect on family housing, 371-372
 effect on loose-fill cellulose, laboratory experiments, 362, 368-369
 effect on roofing, 432-434
 effect on spray-applied fiberglass insulation, 360
 effect on thermal insulation properties, 519
 effect on thermal resistance, 360
 literature survey, 361
 effect on wood and wood products, 406
 exposure studies, EPS materials, winter conditions, 528
 main cause of insulation and pipe failure, 46
 metal window frames, condensation, 572
 polyurethane foam insulation, 431
 protected membrane roof reducing thermal resistance of wood and wood products, 406
Moisture content
 foam insulation, 436
 insulation board facings, 436
 thermal insulation, 394, 399, 405
 wall materials, 382, 385(table), 390, 405
 wood, 634
 data analysis, 277-278
 standard deviation of mean, 244(table)
 test panels, 415
 used for residential construction, 251, 252-273 tables
 wood frame walls, 411, 413(table), 417
 wood studs, 616
Moisture control, 405, 406
 performance of extruded polystyrene, 625
Moisture detection, RTRA/ORNL roof systems, 452
Moisture gain, exposure study, EPS material, 524-528, 529(table), 530(table)
Moisture migration, 395
Moisture monitoring, instrumentation, Delmhorst moisture elements, 616
Moisture performance of building materials, 616
Moisture permeance, urethane foam, 469
Moisture problems
 family housing, Corry Field units, 371-372, 378-379, 390-392
 masonry cavity walls, 319
 mineral fibers, 477
Moisture research, 618-620
Moisture resistance, 48
Moisture retarder paint, evaluated by module testing, 716
Moisture storage and release, 637
Moisture tests, 716
Moisture thermal performance, cellular plastic insulation, 518
Molded EPS materials, 521, 527
 R values, 524
 thermal conductivity, 524
Monitoring, long-term, domestic houses, 607
Multilayer reflective insulation, 506, 511
heat flow, 515–516

N
National Academy of Sciences/National Research Council, Federal Construction Council (NAS/NRC/FCC) technical reports
No. 30: Underground heat distribution systems, 43
No. 39: Evaluation of components for underground heat distribution systems
No. 47: Field investigation of underground heat systems, 43
No. 66: Criteria for underground heat distribution systems, 44
National Bureau of Standards (NBS)
effects of thermal mass, 238
design of thermesthesiometer, 709
National Program Plan
ergy programs, 26
insulation performance, 519
thermal properties of wood, 238
National Research Council of Canada, 108
environmental test facility, 568
National Roofing Contractors Association (NRCA), 432–433
National Voluntary Laboratory Accreditation Program (NVLAP), 509
proficiency testing on thermal insulation, 659
Natural convection, 209–210
New insulation products, laboratory testing, 316
New Mexico Energy Research and Development Institute (NMERDI), 238–239
New Zealand Building Research Association, 94
Nonpressure testable systems, underground pipe installation, 47
NRCA (National Roofing Contractors Association), 432, 447

O
Oak Ridge National Laboratory (ORNL), 239, 449, 458
Oak, thermal conductivity, 272–273(table)
Occupant surveys, moisture and mildew, Corry Field units, 378–379, 389, 390, 391(table)
Off-gassing, 432–433, 444
Office buildings
building envelope, thermal resistance, 107
calculation procedures for energy efficiency, 10
construction details, 121–123
description of test buildings, 181(table)
thermal bridges, 182(figs.)
thermal resistance of exterior wall, 107–123
thermographic inspections, 180–181
anomalies, 182(table)
On-site review, 87
Opacity criteria, 674, 676
Openings, air leakage
building envelope penetration caused by windows, doors, ventilation, etc., 682
standards development, 36
Optical behavior, fibrous material, 669, 675
Optical measurements, 671
Optical thickness, 665–666, 669, 673
reference materials, 672, 676
Optimization parameters for energy efficiency, 27–28, 35–36
Outdoor storage tanks, behavior of water vapor retarders, 464–465
Outside air film, 572
Outside air humidity ratios, 632(fig.), 635

P
Parietodynamic insulation, 154, 155(fig.)
Passive measurement, building walls, dynamic thermal performance, 94–97, 98, 99(table), 100
Passive solar construction, 30–31
Passive solar system evaluation with module testing, 715, 716(fig.)
Peak energy load, building envelope, 336
Penetrations of building envelope, 682
Periodic heat flux, wall thermal performance, 92, 94
Perlite fill, granular
in cavity walls, 319, 320
in insulating envelope systems, 49
Permeability
air, 125
building envelope, 125–127
foamed polyurethane insulation aluminum jacket seam, 74–75
Permeance values, exterior sheathing materials, 615, 616(table)
Permeodynamic insulation systems, 154, 160, 171
Personnel protection, 704
Phase change, 395, 399
Phenolic foam, exposure study, winter conditions, 528, 534
Physical properties, exposure study, EPS materials, winter conditions, 528-529
Physical testing versus theoretical modeling, 713, 716
Pilkington Brothers, Research and Development Laboratories, U.K., guarded hot box facility, 297, 299(table), 301, 303, 307
Pipe conduit, 46
Pipe expansion, 45
Pipe heat loss, 52-53, 63-65
Pipe insulation, calcium silicate, 46
Pipes, copper, 47
Piping
 fiberglass reinforced plastic, 47
 insulated stainless steel, engineered specifications, 86
Piping, underground
 design and installation criteria, 43
 system failures, 43-51
Plastic and metal jacketing materials, vapor barrier design, polyurethane foam insulation, 74
Plastic insulation, cellular, 71
Point system approach to energy analysis for standards development, 31-33, 38
Polystyrene beads, insulating concrete aggregate, 49
Polyurethane insulation
 exposure study, 525-527
 moisture distribution, 530(table)
 moisture resistance, 421, 422
 roofing, 432
Polystyrene sheathing, 412, 589
Polyurethane foam
 bubbling, 440
 elastomeric coatings, 74
 field-installed (FIP) design, 71-73, 78-80
 froth systems, 72
 insulating efficiency, 73
 insulating envelope systems, 49
 pour system, 72
 resistivity, 71(fig.)
 spray system, 72
 thermogravimetric analysis, 437
 vapor barrier design, 74
 water vapor retarders, 463-474
Polyurethane foam specimens, thermogravimetric analysis, 437
Polyurethane insulation, 47, 74, 77-79, 432-434
 bubbling, with hot asphalt applications, 444
 fire protection, 73
Porosity material, 665-668
Portable calorimeter, 108, 109-110(figs.)
Pouring, polyurethane foam, 72
Predicted and measured attic air humidity ratios, 635(fig.), 636(fig.)
Prefabricated pipe construction, underground heat distribution systems, 48
Prescriptive approach, standards development for energy efficiency, 33
Pressure differences, 679
Pressure piping code, 46
Pressure-testable systems, underground piping installation, 46
Pressurization data, 642(fig.), 644, 647
Pressurization tests, building envelopes, measuring tightness, 175
Product variability, 651
Project Pinpoint surveys, National Roofing Contractors Association, 432
Propane tank shell, foam insulation, 76
Protected membrane roof, 421, 422(figs.)
 exposure tests, 425, 426-427(figs.)
Protected membranes, 422
Protective coatings, insulated pipe, 46
Protective finishes, insulation materials, 83-84

Q
Quality assurance, 655
Quality control
 infrared scans, 197
 installation problems, 196, 199-200
 instrument design, 655-659

R
Radiant transfer, reduced by reflective insulations, 507
Radiation absorption, thickness dependent, 65
Radiation-conduction heat transfer, 666
Radiation heat flux density, 666-667
Radiation heat transfer, 208-209, 284-285, 354, 675-676
ceramic fiber insulations, 689
test materials for round robin, 687
thermal conductivity, 666
Radiation reference materials,
Radiometer inspections, 176
Redwood, thermal conductivity, 254(table)
Reference material, 674-676
 thermal conductivity measurements, 283, 666
Reflectance, solar, 457-458
Reflective insulation, 506
 data from hot box tests, 511, 512(table)
Reinforced plastic pipe, 47
Relative humidities
 cavity walls, 379, 390
 low-permeance sheathing walls, 620
 maritime regions, 618-620
 measurement for moisture problems, 375, 379, 381(table)
 thermal resistance of insulation, 394
Reproducibility (see also Interlaboratory
 reproducibility)
 interlaboratory, 699(table)
 mandate for standardization, 656
Residential building envelopes, 34, 36-38
Residential construction, model energy code
 compliance procedures, 9
Residential energy standard, ASHRAE 90A-
 80 versus new standard
 analytical tool selection, 26
 basis for new standard, 22-25
 economic approach, 25-26
 economic parameters, 26
 technical approach, energy analysis pro-
 gram criteria, 25
Residential housing insulation, France, 153
Residential insulation, 639
Residential space heating, 153-172
Residential walls, 615
Resistance, thermal insulation, 652
Resistance variations
Resistivity (R values)
 of thermal insulating materials, 71(fig.)
 wall thermal performance, 91
Retrofit, 639, 643
 army buildings, 218
 effect of insulation on air leakage, 644
 leakage data, 646(table)
 modular retrofit experiment, 647
 return on investment (ROI), 317
 spray-applied insulation, 360
 wall insulation, 196-201, 316
 reduction in air leakage heat loss, 645(table)
RIC/TIMA (Roof Insulation Committee of
 the Thermal Insulation Manufacturers Association), 447
Ringwall-supported tanks, foam insulation
 systems, 79
R-matic instrument for calibration, 660(fig.)
 wall securement systems, test results, 726(table)
Rockwall wall insulation, 197
Rock wool, 477
Roof blisters, composition of gas, 446(table)
Roofing blisters, 432-433, 447
 analysis of gases, 437
Roofing/insulation specimens, 438, 443-444
Roofing membranes, delamination, 432
Roofing systems, 432
Roof insulation
 bubbling, 433, 438-440, 443
 exposure tests, 428
 heat storage effects, 453
Roof reflectance, 457-458
Roofs
 exterior membrane, 178
 protected membranes, 421
 reflectance, 449
 R values, 213, 449
 thermal efficiency of insulation systems,
 172, 178
 thermal performance, 449
 U values, 17(table)
Roof sheathing and trusses
 flow of water, 637
 temperature, 632(fig.)
 wood moisture content, 631(figs.)
Roof surface temperature, 452
Roof systems
 counterflow insulation, Scandinavia, 153
 evaluation by aerial thermography, 181-
 182, 185, 186-187(figs.)
 moisture detection, 452
 surface temperatures, 452, 454-455(figs.)
 thermal performance, 449
 thermographic inspections, 178
Roof thermal research apparatus (RTRA),
 449, 458
 controlled by heat pump, 450
 test panel construction, 450
Round-robin test, 283
 ceramic fiber thermal conductivity, 685-
 696
 expanded polystyrene specimens, 535
 hot plate and heat flow meter, 654
RTRA (Roof thermal research apparatus),
 449, 450
R values (resistivity), 506, 515(table), 570
 air leakage, 213, 377
 army buildings, measurement, 205,
 209(table), 210
 earth contact systems, 135
 loose-fill attic insulation, 494, 495(table), 500
measurement by spot radiometer, 187, 189, 190(tables)
roofs, 449
test panels with foam sheathing, 407, 409(fig.)
thermal insulation materials, 71(fig.)
walls, 91, 219–220, 314
wall securement systems, test results, 726(table)

S

Sandbox, 53–54, 66
test results, 64–65(tables)

Savings to investment ratio (SIR), life cycle costing, energy efficiency program, 214–215, 218

SBCC (see Building codes)

Scale model, 55, 66
test results, 64–65(tables)

Scanning electron microscopy, test data for insulating mineral fibers, 477–479(fig.), 482–485

Scattering coefficient, 665, 669, 671(fig.), 674, 676
correlation between density and thickness, 675(fig.)
versus temperature, 672

Service life, design criteria for tank insulation system, 70

Settling, 494, 500

Shading of solar walls, 606

Sheathing, 412

Sheathing, low-permeance, 615

Sheathing, roof, 616

Silicate-coated perlite module, 717

Simplified thermal parameter (STP), 94

Simulated pipe system, small-scale test, 55, 56(fig.)

sand temperatures, 57–62(figs.)

Single-wall insulation systems, 70

Skylights, air leakage control, standards development, 36

Slab-on-grade-floor heat loss

basement heat loss factor, 140–141, 143, 144–151(tables)

Delsante solution, 132, 134

Slabs

comparative assessment of code requirements, 24(fig.)

standards development for energy efficiency, 29

Slag rock wool fibers, 477

material degradation, 482–491

Smoke test, air flow visualization, 171

Society of the Plastics Industry

expanded/extruded polystyrene, 519

round robin study, EPS materials, 535
test materials

black molded polystyrene, 520

extruded polystyrene, 520

phenolic foam, 520–521

Softwoods, thermal conductivity, 240–241(tables)
data compared with standard, estimates of precision, 246(table)
density/conductivity relationship, 279

Soil condition criteria, design of underground pipe systems, 44–48

Soil corrosivity determination, by soil resistivity test, 45

Soil moisture content, 65

Soil thermal conductivity, 65–66, 135

Mitalas system, 144–151(appendix tables)

Solar fenestration, energy calculations, 11

Solar heating and ventilation systems, 604(fig.)

Solar houses, 600

Solar insulation, domestic houses, 607

Solar reflectance, on thermal performance of roof systems, 457

Solar wall ducts, convective contribution, 606–607

Solar walls, 599

shading, 606

Southern pine, thermal conductivity, 264–266(table)

Space conditioning loads, predicted and measured, 550(table), 551–552

Space cooling load comparisons, masonry/wood frame, 559(table)

Space heating, 153–172

Space heating/cooling loads

computer program (TARP) for predicting, 542

high-solar-gain house, annual reductions, 561(table)

results of comparisons, 544

Space heating load comparisons, masonry/wood frame, 558(table)

Space heating, savings in energy consumption, 607

SPI (see Society of the Plastics Industry)

Spot radiometer inspections, 176

thermal resistance measurement, 187, 189

used to measure interior surfaces, 178–179

Spray-applied fiberglass insulation, 310
Spray-applied insulation systems, 360, 367-369
polyurethane foam, water vapor retarders, 463-474
thermal effects of moisture, field experiments, 363-366
Spraying polyurethane foam, 72
Spruce, thermal conductivity, 250(table)
Stainless steel surfaces, insulation, engineered specifications, 86
Standardization, 656
Standards (see also ASTM standards)
API 620: 76
ASHRAE Ad Hoc Standard 90-R: 29
ASHRAE Cooling and Heating Load Calculation Manual, 10
ASHRAE Handbook of Fundamentals, 10, 721
ASHRAE SPC 119P: 34
ASHRAE Standard 62-81: 34
ASHRAE Standard 90: 21-22
ASHRAE Standard 90A-80: 22, 26-31
ASHRAE Standard 90B, Section 10-11: 29
ASME B31.1, Code for Pressure Piping, 46
British Standard 874: 346
California Energy Code, Title 24 (CEC), 22
Farmers Home Administration (FmHA), 22
French Standard, NF X-02-22, 346
German Standard DIN 52611: 346
Housing and Urban Development Minimum Property Standards (HUD-MPS), 22
housing industry dynamics (HID) survey, 22
International Organization for Standardization, Committee 163 on thermal insulation, 346
International Organization for Standardization, heat flow meter standards, 656
Pennsylvania Energy Code (PENN), 22
Swedish Standard (SS) 02 42 12: 346
Standards assessment, 22, 31-34
Standards development
air leakage, 32-33, 124
ASTM Committee C-16, human burn protection, 704
ceilings, 29, 36
energy analysis methods, 31
point system approach to energy analysis, 31-33, 38
Standards methodology, 22, 25-35
Standard test method, ASTM proposed, thermal performance of building components, 718
Standing water during rain, 386-387
State energy programs, 26
Steam, heat tracing medium, 85
Steel pipe, for hot water and steam installations, 47
Still air layer, 283-286, 666
Storage tanks, 69-70, 76-80
STP analysis (see Simplified thermal parameter)
Stress corrosion cracking, of insulated stainless steel piping, engineered specifications, 86
Stress, thermal and mechanical equations, 75-76
in foam insulation systems, 75-76
Stud moisture content, 622-624
Styrene insulation, 421
laboratory tests, 423
Sulfur hexafluoride tracer gas, 377
Superinsulated buildings, 153, 216
Surface absorbance, thermal effect, 457
Surface heat transfer coefficients, 308
Surface humidity ratio, 634
Surface temperatures
hermetically sealed glazing unit, 568(fig.)
hot box design, 356
Sweden, National Testing Institute, classifying insulating materials, 395
Systems analysis approach for energy conserving design, 31-33

T

Tanks, 78-80
outdoor storage, water vapor retarders, 464-466
thermal insulation, 70, 76
TARP (see Thermal Analysis Research Program)
Temperature
batt/sheathing interface, 627(fig.)
dynamic performance of wall, 92
office building walls, field tests, 111(fig.), 112
mass scattering coefficient, 672(fig.)
moisture problems in family housing, Corry Field units, 375, 379, 380(table)
roof sheathing and trusses, 632(fig.)
Temperature and heat flux, dynamic test results, 329-334(figs.)
Temperature baffle, 574(fig.), 577
Temperature measurement
cavity walls, 379, 390
counterflow insulation systems, 165-168
dynamic insulation, 166-169
dynamic temperature cycles, 329–331 (figs.)
for moisture problems, 375, 379, 380 (table)
glass, 567
guarded hot box facility, 302–303
roof thermal research apparatus (RTRA), 450
versus moisture capacity, 628 (fig.)
Temperature/moisture profiles
roof sheathing and trusses, 632 (fig.)
urethane foam in tanks, 469 (fig.)
Temperature profiles, 65, 67 (fig.)
Temperature/time relationship, human skin
burns, 706–707 (fig.)
Temperature uniformity, 354–355
Temp Guard insulation furring (TGIF) system, 590, 591 (fig.), 597
Test apparatus
instrumentation and control, 583–585, 686
temperature sensing, 583
Test constructions for masonry securement
systems, 721–724
Testing for air leakage, 377, 641–642
Testing insulation, 642–643
Test method and apparatus, 567
model parameters determined by least squares, ceramic fiber round robin,
693 (table)
round robins, 699
thermal conductivities, ceramic fiber round robin, 691
Tests for thermal resistance of wall constructions, 720–721
TGIF system (see Temp Guard insulation
furring system)
test construction, 721–722 (fig.)
Thermal analysis, heat loss calculations, 132
Thermal Analysis Research Program
(TARP), 542, 565
Thermal and hygric measurements, roof systems, 449
Thermal barrier, interior surface finish, 720
Thermal bridges, 180, 182–185 (figs.), 311, 592, 593, 602, 721
Thermal capacity, walls, 11
Thermal conductances (C value), 306, 506, 567
Thermal conductivity (U value) (see also
Average computed conductivity), 65, 66 (table), 160, 169, 394
air, 287
ASHRAE recommendations, 570
building envelope, 127–129 (fig.)
ceramic fiber insulation, round robin, 686
correlated with density, 251
decrease caused by convective heat transfer, 369
exposure studies, expanded polystyrene materials, winter conditions, 524–530, 531 (table)
glass-fiber insulation materials, 368
guarded hot box facility, 299, 306
loose-fill insulations, 494 (table)
mean temperature
calorimeter tests, 698 (fig.)
guarded hot plate tests, 697 (fig.)
of wet material, 395, 400
polyurethane foam, 73
exposed to moisture, 75
protected membrane roof, 421
results, laboratory averages, 709 (table)
round robin analysis for ceramic fiber insulation, 686
spray-applied insulation, 362–364, 365 (table)
standard deviation of mean, 242 (table)
versus moisture content, 361
walls, 91, 94
wood, selected species, data analysis, 249, 268, 269 (table)
Thermal conductivity measurement, 668, 671, 675
mineral fibers, 485
Thermal conductivity tests, 695 (table)
Thermal conductivity versus density, 669 (fig.), 670 (fig.)
Thermal effects of surface absorptance, 457
Thermal efficiency
insulation materials, 720
measured by wet/dry thermal resistance, 424
roof insulation, 172, 178, 431
Thermal environment in buildings, module
test used to evaluate, moisture retarder paint, 716
Thermal experiments, 450
Thermal hot plate, biguarded, 286
Thermal insulating materials, 477
Thermal insulation, 506, 541, 567, 582, 599
airtightness, 680 (fig.)
army buildings, 203, 207
ASTM Committee C-16, 705
basement heat loss factors, 144–151 (tables)
building envelope air movements, 124
cavity wall, 319, 338
cellular plastic, 518
combustible cellular plastic, 720
counterflow systems, 154–162
deterioration, due to groundwater ingress, 52
earth contact systems, 135
energy efficiency, 69
engineered specifications, 82–88
Thermal insulation (cont.)

exterior envelopes of office buildings, 175-195
formaldehyde emissions, 223-237
heat loss factors, 144-151(tables), 286-287
hot box method for testing, 297-299, 303, 307, 346-347
installation, workmanship, 679, 680, 681(fig.)
loose-fill attic insulation, 493
materials
application procedures, 87-88
degradation, 477
thermal resistance values, 652
measuring techniques, hot box method, 345-359
metal furred wall systems, 720
mineral fiber, 394-395
module tests, 716
moisture problems in family housing, 371-372
new products, 310
office buildings, field measurement, 107-123
polyurethane foam insulation system, 69-81, 431
reference materials, 666
residential energy standards, 32-34
resistance, 652
basement heat loss factors, 144-151(appendix tables)
retrofitted walls, 196-201
roof systems, 172, 178, 449
protected membranes, 421
slab-on-grade floor heat loss, 144-151(tables)
spray-applied, 360, 367-369
stress, 75
equations, 75-76
underground heat distribution systems, 46, 49, 52
wall thermal performance, 92-98, 198-200
wall U values, 11-15, 92, 94
water vapor retarders, 463
wood data base 238-282
wood frame walls, 405

Thermal Insulation Manufacturers Association (RIC/TIMA), 447

Thermal mass effect 541, 542
dependent on internal heat gains, 563, 565
Thermal parameter theory, 92
Thermal performance, 567

army buildings, field investigations, 203
building components, ASTM proposed Standard test method, 718
building envelope, 107-108, 124-131, 616
guarded hot box facility, 297
conductance/transmittance, 301
energy measurement, 300(fig.), 301
in situ measurements of roof systems, 449
monitoring, 599
of insulation, heat flow meter technique, 652
reflective insulations, 506
related to poor application procedures, 314
roofs, 449
solar reflectance, 457
spray-applied insulation systems, 360, 367-369
walls
active measurement strategy, 91-92
passive measurement strategy, 91-92, 94, 98-100
Thermal properties
exposure studies, expanded polystyrene materials, winter conditions, 528, 531(tables), 532-534
measurement/verification, 297
of wood, data base, 238-282
Thermal resistance measurement
future needs
high-temperature heat flux transducers, 662
high-temperature reference materials of different thicknesses, 663
stability over a high-temperature range, 663
instruments
calibrated hot box, 327(table)
guarded hot box, 175-176, 311-313, 314(table)
spot radiometer, 187, 189, 190(tables), 192, 193(figs.)
Thermal resistances (R values)
building envelope, 131, 310
cement block wall, 593(table), 594, 596(table)
decreasing with increasing moisture, 424
discussion, 592
hermetically sealed glazing, 568(fig.), 570(table)
insulation materials, 71(fig.), 160, 310, 394-395
mean temperature for concrete block with
wall laminate, 595
office buildings, 107
protected membrane roof, 421
quality control instrument, 655
reductions, 564(fig.), 565(table)
reflective insulations, 506
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>test results, 592</td>
<td></td>
</tr>
<tr>
<td>walls, 91, 112–113(fig.), 326</td>
<td></td>
</tr>
<tr>
<td>wet mineral wool, 396-397</td>
<td></td>
</tr>
<tr>
<td>Thermal response dynamic tests, test procedures/results, 328–329</td>
<td></td>
</tr>
<tr>
<td>Thermal sensations, range of temperatures compatible with tissue life, 708(table)</td>
<td></td>
</tr>
<tr>
<td>Thermal shorts, 316–317</td>
<td></td>
</tr>
<tr>
<td>Thermal testing, 92–97, 161–171</td>
<td></td>
</tr>
<tr>
<td>calculation techniques, 511</td>
<td></td>
</tr>
<tr>
<td>reflective insulations apparatus and test panels, 509</td>
<td></td>
</tr>
<tr>
<td>laboratory test plans, 508</td>
<td></td>
</tr>
<tr>
<td>test results and discussion, 511</td>
<td></td>
</tr>
<tr>
<td>test specimens, 510</td>
<td></td>
</tr>
<tr>
<td>Thermal transfer test facility, 298(fig.)</td>
<td></td>
</tr>
<tr>
<td>Thermal transmission data, 597</td>
<td></td>
</tr>
<tr>
<td>Thermal transmission properties, test wall, 584</td>
<td></td>
</tr>
<tr>
<td>Thermal transmittance air flow along insulation, 682(fig.)</td>
<td></td>
</tr>
<tr>
<td>air leakage around electrical outlet, 683(fig.)</td>
<td></td>
</tr>
<tr>
<td>guarded hot box, 299</td>
<td></td>
</tr>
<tr>
<td>increase due to pressure and air flow, 130(fig.)</td>
<td></td>
</tr>
<tr>
<td>Thermesthesiometer, new NBS tool for evaluation of hazardous conditions, 709</td>
<td></td>
</tr>
<tr>
<td>Thermists, 110</td>
<td></td>
</tr>
<tr>
<td>Thermodynamic insulation, 164</td>
<td></td>
</tr>
<tr>
<td>Thermographic inspections, 176–177, 180–182, 194, 196–201, 207</td>
<td></td>
</tr>
<tr>
<td>Thermographic survey of solar houses, 602</td>
<td></td>
</tr>
<tr>
<td>Thermography, infrared aerial and ground-based, 176</td>
<td></td>
</tr>
<tr>
<td>review of insulated surfaces, 88</td>
<td></td>
</tr>
<tr>
<td>Thermography scans, wall insulation, cost effectiveness, 200</td>
<td></td>
</tr>
<tr>
<td>Thermogravimetric analysis insulating mineral fibers, 478–479, 482–485(figs.), 488–489(figs.)</td>
<td></td>
</tr>
<tr>
<td>polyurethane foam specimens, 437, 441, 442(fig.)</td>
<td></td>
</tr>
<tr>
<td>Thermometer, infrared (see Spot radiometer)</td>
<td></td>
</tr>
<tr>
<td>Thermophysical properties of wood, data base, 238–282</td>
<td></td>
</tr>
<tr>
<td>Thermo-Stud system, 589–590, 597</td>
<td></td>
</tr>
<tr>
<td>Thickness effect, 671, 675</td>
<td></td>
</tr>
<tr>
<td>cellular plastic insulation, 518</td>
<td></td>
</tr>
<tr>
<td>heat flow meter use for quality control, 661–662(table)</td>
<td></td>
</tr>
<tr>
<td>Thickness, loose-fill attic insulation measurement in situ, 496, 497–499(tables)</td>
<td></td>
</tr>
<tr>
<td>variations with time, 497</td>
<td></td>
</tr>
<tr>
<td>Thickness measurements, before/after round robin testing by calorimeter, 688(table)</td>
<td></td>
</tr>
<tr>
<td>by guarded hot plate, 688(table)</td>
<td></td>
</tr>
<tr>
<td>Thickness versus calibration constant, RMatic instrument, 660(fig.)</td>
<td></td>
</tr>
<tr>
<td>Time constant, wall thermal performance, 91, 96–99(tables)</td>
<td></td>
</tr>
<tr>
<td>Tissue life, after hazard exposure, 708(table)</td>
<td></td>
</tr>
<tr>
<td>Tools for evaluation of hazardous conditions, thermesthesiometer, testing the thermophysical reaction of human skin to a heated surface, 709</td>
<td></td>
</tr>
<tr>
<td>Tracer gas, air infiltration measurement, 175–176, 377</td>
<td></td>
</tr>
<tr>
<td>Transducers, heat flux, 108, 110, 119–120</td>
<td></td>
</tr>
<tr>
<td>Transducer signals, 583</td>
<td></td>
</tr>
<tr>
<td>Transfer standards, 651</td>
<td></td>
</tr>
<tr>
<td>Trench systems, insulated underground pipe, 46</td>
<td></td>
</tr>
<tr>
<td>Trombe-type solar wall (U.K.), substantial energy saving, 608</td>
<td></td>
</tr>
<tr>
<td>Trusses, roof, 631–632, 637</td>
<td></td>
</tr>
<tr>
<td>Tunnel systems, buried, for housing underground piping, 50</td>
<td></td>
</tr>
</tbody>
</table>

U

Ultraviolet light, vapor barrier design, aluminum jacketing, 74

Unbonded loose-fill fiberglass insulation, 310

Underground heat distribution systems, 43

Underground insulated piping systems alkalinity, 44–45

conduit systems, 46

design and installation criteria, 43

drainage, 44–45

failures, 43–44

maintenance and performance, 50

Underground water conditions, classification, 44(table)

Uniform temperature convection heater, 575(fig.), 577

Urea-formaldehyde foam insulation (UFFI) walls, 199

Urethane foam insulation, 421

laboratory tests, 423

temperature/moisture profiles, 469(fig.)

U value (see Thermal conductivity)

V

Vapor barrier, 615, 679, 682

coating, 74, 423

design, 74
Vapor barrier (cont.)
effect on airtightness, 133
effect on pressure drop, 129
efficiency, 75
polyurethane foamed insulation, 47
design, 74, 79, 80
trapped moisture, 401
Vapor compression air conditioning, 560
Vapor movement
effect on conductivities, 369
effect on heat transfer, 361
Vapor pressure gradients, laboratory wetting test, 428
Vapor proofing, engineered specifications, 84
Vapor retarder, 406, 412, 464, 466-467
Vapor retarder coatings, 463
Vapor retarder paint tests, 716-717(fig.)
Vapor sealing membranes, 46
Ventilation
attic, 635
new rationale required, 637
building envelope, 125
exchanges, 605
fresh air, 18, 19(table)
insulation efficiency, 154-156, 160-171
load, energy efficiency, 9, 12, 14
whole-house, versus vapor-compression air conditioning, 560
Ventilation systems, solar houses, 604(fig.)
Verification procedures
guarded hot box facility performance, 308
measurement/verification, 302-304
thermal properties, 297
Vermiculite
insulating concrete aggregate, 49
new construction applications, 642
Vitrified clay, for pipe conduits, 48
Voids
roofing insulation, 434, 444, 445(fig.), 446(fig.)
wall insulation, 198-199, 314
Wall heat transfer, measurement strategies, 94-100
Wall insulation, 14-17, 197, 610
fiberglass, 197
installation problems, 197-200
quality control, 199-200
on-site inspection program, thermography scans, 200
retrofit, reduction in air leakage heat loss, 644-645(table)
void areas, 198-199
Wall materials, moisture content, 375
Wall orientations, 10(table)
Wall relative humidity, 626(fig.)
Walls
air leakage, 213
basement heat loss calculations, 132, 142
code requirements, 23(fig.)
convection, army housing units, 209
dynamic thermal response, 92-98
heat flow, 120
inside surface temperature, 571
insulation efficiency, 171, 196
infrared thermography scans, 197
residential, 615
R values, 213, 219-220(table)
standards development, 29
thermal performance, measurement strategies
active, 92-94, 96-98
passive, 94-96
thermal resistances, 112, 114-116(table), 117, 120
measurement period, 119
tests, 721
U values, 16(table)
water vapor permeance, 616
Wall surface temperatures, hot box measurement, 355
Wall systems, 311, 312-313(figs.)
cavity walls, 319
comparison of measured and calculated R values, 728(table)
discussion, test results, 592-597
drywall laminate system, 589
exterior insulated finishing system, 592
guarded hot box test results, 725(table)
installation, 588
metal Z-furring channel system, 590
R values, 313
Temp Guard insulation furring (TGIF) system, 590
test results of R values, 726(table)
Thermo-Stud system, 589-590
Washington, DC, basement wall/floor heat loss, 144-151(appendix tables)
Wall cavities, excessive moisture, 405
Wall conductance, reduction after wall insulation retrofit, 646
Wall constructions
discussion of test results, 592
interior insulation systems, 587
St. John's, Newfoundland, 621(fig.)
surface-to-surface R values, measured concrete block wall, 592, 593(table)
Wall dynamic thermal performance, 335
Wall fluxes, Fourier transforms, 100-104
Wall heat loss, 108
Wall orientations, 10(table)
Walls
air leakage, 213
basement heat loss calculations, 132, 142
code requirements, 23(fig.)
convection, army housing units, 209
dynamic thermal response, 92-98
heat flow, 120
inside surface temperature, 571
insulation efficiency, 171, 196
infrared thermography scans, 197
residential, 615
R values, 213, 219-220(table)
standards development, 29
thermal performance, measurement strategies
active, 92-94, 96-98
passive, 94-96
thermal resistances, 112, 114-116(table), 117, 120
measurement period, 119
tests, 721
U values, 16(table)
water vapor permeance, 616
Wall surface temperatures, hot box measurement, 355
Wall systems, 311, 312-313(figs.)
cavity walls, 319
comparison of measured and calculated R values, 728(table)
discussion, test results, 592-597
drywall laminate system, 589
exterior insulated finishing system, 592
guarded hot box test results, 725(table)
installation, 588
metal Z-furring channel system, 590
R values, 313
Temp Guard insulation furring (TGIF) system, 590
test results of R values, 726(table)
Thermo-Stud system, 589-590
Washington, DC, basement wall/floor heat loss, 144-151(appendix tables)
Water absorption of foam, 467–468(tables)
Water calorimeter, 686
Water flow rate inside attic, 633, 637
Water leakage
 at footing, 387
 in family housing, 377, 390
Waterproof coatings, underground pipe systems, 45–46
Water spray tests, moisture problems, 378, 388–389
Water table, ground drainage tests, 377
Water vapor diffusion, 463
Water vapor movement rate, 405
Water vapor permeability, 232
 of wall materials, 372
 vapor barrier design, aluminum jacketing, 74
Water vapor permeance of walls, 616
Water vapor pressure, in insulation systems, 73, 390
Water vapor retarders, chlorosulfonated polyethylene mastic, 464, 466–468
Water vapor transport, preventive use of vapor retarders, 716
Weather fluctuations, 103
Weatherization, walls, 196–201
Weather side air film, 572
Wet bulb temperature, 12
Wet insulation in walls, after condensation, 406
Wetting
 behavior of insulations, 428–429, 456(fig.)
 protected membrane roofs, 424, 428
 exposure tests, 425–427(figs.)
White pine, thermal conductivity, 251, 255–258(tables)
Wind flow around tanks, 77
Wind loading, estimations of pressure differences, 127
Wind loads and pressure, 679
Wind machine, Canadian Division of Building Research, 572, 573(fig.)
Window frames, metal condensation, 572
Windows
 evaluation program, 578
 heat transfer equations, 569–572
 standards development, 36
 surface temperature, hermetically sealed glazing unit, 568(fig.)
 tests using DBR wall calorimeter apparatus and test setup, 578–581
 thermal performance, 567
Wind protection, 679, 681
 building envelope, 124–125, 127–128
Wind resistance, design criteria for tank insulation systems, 70, 76–77(fig.)
Wind speed, 636(fig.)
Winter temperatures, humidity conditions, 524–529
Wood
 data analysis
 electrical resistance, 617
 moisture content, 634–635, 636(fig.)
 specimen preparation/test conditions, 274–275(table), 277
 surface film humidity ratio, 634–635
 thermal conductivity, 277–278, 280
 used for domestic residential construction
 mean density compared with mechanical property data, 247(table)
 thermal properties, 251, 252–273(tables)
Wood frame walls
 condensation, 405, 410–416
 decay, 406
Workmanship, deficiencies in installation, 679–680

Y
Yellow pine, mechanical/thermal properties, 251

Z
Z-furring test construction, 724(fig.)