Subject Index

A

ABC, 119, 146–147
Acoustic approximation, 12
Aerotherm, 304, 308
Agricultural dust explosions, 90, 243–263
activities of panel on causes and prevention, 246–248
20 April 1982 explosion, 256–257
average annual accident statistics, 263
explosion incidents 1979–1986, 252–256
explosions, deaths, injuries, and fires, 247
ignition sources, 248
location of primary explosion, 249
11 May 1984 explosion, 257–260
30 May 1984 explosion, 256
2 Nov. 1985 explosion, 256
16 Nov. 1982 explosion, 255–256
recent history, 248–249, 252–262
19 Sept. 1984 explosion, 258, 260–262
U.S. history, 244–246
Aluminum dust particles, photomicrographs, 17
Ammonium phosphate, as inerting agent, 29
Anthracite coal
autoignition, 49
flammability limits, 15
Ash, definition, 232
ASTM C 737, 118
ASTM D 121-78, 233
ASTM D 197-82, 233
ASTM D 271, 334
ASTM D 311-30, 233
ASTM D 388-82, 233
ASTM D 1620, 334
ASTM D 2015, 111
ASTM D 3172-73, 111, 233
ASTM D 3175, 49, 52
ASTM D 3176-84, 233
ASTM D 3904, 115
ASTM E 659, 46, 54
Atomized water test, 339–340
Autoignition temperature, 45–49
autoignition boundaries, 46–47, 49–50
decane, 54
as function of particle size, 52–53
1.2-L furnace and instrumentation, 47–49
lean flammability limit boundary, 46–47
lycopodium dust, 46
methane, 54
minimum, 20–21, 51
hybrid mixtures, 24–25
particle diameter, 24
use of data, 55–58
oil shale dusts, 53–54
volatility yield, 53

B

Backscattering aerosol monitor, 294–296, 308
dust concentration correlation, 303
regression equation, 301
Baghouse dust
collector, 224
maximum flame velocity and secondary
dust concentration, 97
maximum pressure, 98
particle size, 93, 95
secondary dust explosions, 96–97
Bag ignitors, 113–114
Ball tube mill, 192
BCD, 119
Bituminous coal
autoignition, 49
explosion characteristics, 36
high volatile, flammability limits, 15, 20
particle size effect, 22–23
low volatile, flammability limits, 15, 20
particle size effect, 22–23
photomicrographs, 16
pulverized dust
dispersability, 111–112
flammability, 111–113
inerting, 116–119
Bituminous coal dust/air mixtures, explosion behavior, 35
Boltzmann distribution function, 57
Bowl mill, 192–193
dust accumulations, 199
incident frequency, 193
Brown coal
explosion characteristics, initial pressure influence, 42
limiting oxygen concentration as function of initial pressure, 43
Brown coal dust/air/inert gas mixtures, oxygen concentration effect on explosion characteristics, 39
Brown coal dust/air mixtures, explosion behavior, initial pressure influence, 41–42
Brown coal dust/air/nitrogen mixtures, explosion behavior, 38
Bruceton Experimental Mine, 345, 347
configurations for full-scale tests, 109–110
dispersed dust tests, 109
Brush discharge, 171, 174, 274
BS 5958, 62, 68
BS 6467, 62
Bureau of Mines
20-L chamber, 108, 325–326
experimental mine, 139–143
1.2-L furnace, perspective schematic, 48
light-attenuation monitor, 296–297
see also specific facilities
Burgess-Wheeler law, 21
Burning velocity, 9
closed end ignition, 10–11
turbulence effect, 10
education and training, 232
equipment design, 231–232
explosion
4 April 1978, New York, 225
23 Jan. 1985, New York, 228–229
18 July 1984, California, 227–228
18 June 1985, New Mexico, 230
16 Oct. 1979, Montana, 225–226
history, 217
ignition source removal, 230
inerting, 230
laboratory testing, 220
prevention and recommendations, 230–232
preventive maintenance, 232
Characteristic diameter, 23
Class II locations, 333–334
electrical equipment testing, 334–335
Clinker, definition, 232
Cloud ignition temperatures, 47
Coal
characteristics, 75, 77
lowest autoignition temperatures, 52
selection, dust fire/explosion probability, 219–220
size distribution, 209
storage, 224
volatility yield, 53
see also specific types of coal
Coal bin, 223, 232
Coal bunker, definition, 232
Coal dust, 107, 191
concentration, 124
domains of flammability and thermal autoignitability, 21
flammability limits, 22–24
mixed with gilsonite dust, 25–26
mixed with limestone rock dust, flammability limits, 28–29
mixed with methane, 25–26
with added nitrogen, 27
proximate analysis, 37
Coal dust explosions, 124–138, 152, 218
buildup conditions, 126–127
calcium dust concentration, 132–135
early studies, 343–344
fuel zone, 130–132
ignition of methane pockets, 138
inert fraction, 135–136
Calorific value, definition, 232
Cannon ignitor, 114
Carbonaceous dusts, volatility yield, 53
Carbon dioxide, as inerting gas, 28–29
Cement industry, 217–233
case history of accident investigations, 224–230
calcined systems, 220–224
cement kiln, 227
Coal dust explosions, 124–138, 152, 218
buildup conditions, 126–127
calcium dust concentration, 132–135
early studies, 343–344
fuel zone, 130–132
ignition of methane pockets, 138
inert fraction, 135–136
C
initiation source influence, 129–130
instrumentation and recording of explosion tests, 127–129
parameters tested, 128
particle size effect, 134–135
pressure-time traces, 6–7
propagation in pipes, 74–89
coal characteristics, 75, 77
distance-time diagram, 77, 81–83, 87
ducts connected to a 1-m³ vessel, 77, 79–87
isolated ducts, 77
material, 75–76
measuring systems, 75
turbulence decay effect, 9–10
two step ignition, 126–127
Coal Dust Testing Regulations, 125
Coal fired systems, 202, 217
coal handling, 224
direct fired, 220–221
indirect fired, 222
problem areas, 223–224
semidirect fired, 220
unplanned shutdowns, 224
Coal/methane mixture
inerting, 121
mine dust explosion, 115
see also Hybrid mixtures
Coal mines, 107, 138
Coal/natural gas mixture, mine dust explosion, 115–116
Coal pulverizer, 191–200
age, 204–205
average explosion per year, 204, 207
ball tube mill, 192
bowl mill, 192–193
capacity, 204–205
cool
ash, 205–206
bed depths and temperatures, 199
characteristics, 209
moisture, 205–206
type, 204, 215
volatility, 205–206
debris, 224
design and operation, 191–193
distribution and type of pulverizer, 193
explosibility analysis, 198–200
explosion testing
facility, 208
using pipeline fire ignition sources, 209–211
using pulverizer fire ignition sources, 212–214
full-scale explosion tests, 208–209
hammermills, 193
high temperature alarms, 193, 195
ignition sources, 199
incident 10, 196–197
incident 23, 197–198
incident database, 195–195
inert gas purge systems in incidents, 195
inerting systems, 216
laboratory steam inerting tests, 214–215
maximum flame speed versus coal dust concentration, 213
maximum pipe pressure
versus coal dust concentrations, 212
versus position along coal pipe, 209–210
maximum vessel pressures versus coal dust concentrations, 213
number per unit, 204–205
operational status at ignition, 193–194
operation mode, 203–204
outlet fuel concentrations, 198
peak pipe pressure versus coal pipe air velocity, 210–211
property damage in fire/explosion sequence, 195
pulverizer age, 216
pulverizer type and operation mode, 216
startup and shutdown practices, 193
survey approach, 202–203
survey database, 203
survey trends, 203–208
systems, 215
 Coal silo, definition, 232
Coal surge bin, 224
definition, 232
Confinement, 13
Conical pile, discharge from, 171, 175
Cornstarch
dust explosion, pressure vented vessel, 178
maximum reduced explosion characteristics
air volume influence, 180–181
relief area influence, 180, 182
mixed with hydrogen, 25–26
Critical mass of suppressant, 283
Cube root law, 70
Cubic law, 9, 34, 178, 267
Cyclone plant, vented dust explosions, 268–269

D

Decane, autoignition temperatures, 54
Design measures, 173, 175–188
area requirements of VDI 3673 versus test results, 178–180
disengagement within combined systems, 182–183, 185–188
ductile materials of construction, 176
explosion diverter, 188–189
extinguishing barrier, 186
pressure resistant
maximum explosion pressure, 175–176
reduced maximum explosion pressure, 177–182, 184–185
rapid action valves, 186–188
relief pipe effect on reduced maximum explosion pressure, 177
rotary-vane feeder, 183, 185–186

Devolatilization, 14, 23–24
Dimensioning, 265
DIN 51718, 37
DIN 51719, 37
DIN 51920, 37
Dispersability, pulverized bituminous coal dust, 111–113
Dispersed dust concentration, 95
Dortmund standard coal dust, 126, 134
Double propagation criterion, 113–114
Dust/air/inert gas mixture, 33–44
Dust/air mixture, 33–44
explosible, avoidance, 161–162
turbulence, 180
Dust blanket temperature test, 336, 338
Dust blast test, 339–340
Dust cloud
burning rate, maximum pressure effect, 266
generation, 267
test chamber, 300
calibration data, 302
Dust combustion, 90

Dust concentration, flammability effect, 13–16
Dust dispersion, 18–19
Dust explosion, necessary conditions, 45
Dust fire/explosion probability, factors affecting, 218–220
Dust hazard class, 71
Dust-ignition-proof enclosures, 333, 335
Dust particles, photomicrographs, 16–17
Dust penetration test, 338–339
Dust probes, 294
Dust/propane mixtures, limiting oxygen concentration, 164
Dust testing, 158–161
Dust-tight enclosures, 333, 335–336
Dynamic pressure as function of length of coal dust zone, 131, 134
initiation sources, 130

E

Electrical equipment testing, 333–341
atomized water test, 339–340
Class II locations, 334–335
dust blanket temperature test, 336, 338
dust blast test, 339–340
dust-ignition-proof enclosures, 335
dust penetration test, 338–339
dust-tight enclosures, 335–336
enclosures that minimize dust entrance, 336
intrinsically safe circuits, 336
spark ignition test, 340–341
test facilities, 336–337
Electrical ignitability properties, 56
Electrostatic discharges, ignition sources, 274–275
Elongated 8.6-m³ empty vessel, explosion vents, 270–271
Ethylene, coal dust mixtures, ignition probability, 316, 318–319
Exothermic reactions, 7–8
Explosibility assessment, 60–72
explosibility classification, 62–64
large scale tests, 71–72
legal requirements, 61–62
longwall ignition suppression, 149
maximum explosion pressures, 69–70
maximum permissible oxygen concentration to prevent ignition, 69
minimum exploisible concentration, 64–66
minimum ignition energy, 68–69
minimum ignition temperature, 66–68
rates of pressure rise, 69–71
Explosibility classification, 62–64
Explosibility index, 55
Explosibility rate constant, 281, 284, 286
Explosibility vents, 265
Explosion
 conditions for, 18
 definition, 5–7
 oxygen limit concentration, 38–40
 pressure influence, 43
 probabilities, 18
 test arrangements and procedures, 33–35
Explosion diverter, 188–189
Explosion hazard, 342
Explosion intensity, potential, 281
Explosion limit
 initial pressure influence, 40–43
 lower, see Lower explosion limit
Explosion pentagon, 230
 definition, 232
Explosion pressure, 6, 12, 60, 124, 173
 initial pressure influence, 40–43
 maximum, 33, 38, 69–71
 pulverized bituminous coal/limestone mixtures, 118
 pressure resistant design, 175–177
 reduced maximum, pressure resistant design, 181–182, 184–185
 release, 180
 suppressed, measured and calculated, 291–292
 temperature influence, 35–38
 vent size on distribution, 276–277
Explosion suppression, see Suppression
Explosion violence, 265
 distribution, 276
 influence of process or product changes on distribution, 277–278
Explosiveness, 324
5.4-L extinguisher, 182–183
Extinguishing agent
 ABC powder, 146–147
 purple K, 147
 water, 140–146
Extinguishing barrier, 186
Extinguishment, 29, 152; see also Inerting

F
Factories Act 1961, 61
Fires, 191, 202, 217
 extinguishing agents, 138
 prevention safety, 202
 suppressants, 138
 triangle, 230, 232
Fixed carbon, definition, 232–233
Flame acceleration, 12–13, 90
Flame acceleration tube, 91–92
 maximum pressure and tube location, 98
 turbulence-generating grids
 dispersed dust concentration, 100, 102
 maximum flame velocity, 99, 101
 maximum gas temperature, 100, 104
 maximum gas velocity, 100, 103
 maximum pressure, 99–100
Flame jets, ignition sources, 273–274
Flame length, 124
 as function of coal dust zone, 133
 inert material effect, 136
Flame propagation, 10
 from closed end of tube, 10–11
 dynamics, 5
 Mach number, 13
 speed, 8–9
Flame speeds, 13, 74, 77, 81–83, 143
Flame velocity, maximum, 95
 secondary dust concentration, 97
Flammability, pulverized bituminous coal dust, 111–113
 limestone mixture, 116–117
Flammability limits, 5
 coal dust/limestone mixtures, 28–29
 effect of varying dust concentration, 13–16
 gaseous mixtures, 311
 initial temperature and pressure effect, 21–22
 lean limit concentration, 21
 particle size effect, 22–24
Flammable mixtures, 310
Floor sweepings dust, particle size, 93, 95
Fuel gas, see Gaseous fuel
Fuel zone, 124
 coal dust explosions, 130–132
G

Gaseous fuel
dispersion, 19
dust fire/explosion probability, 218
eyearly studies, 343
mixed with dust, 24-25
mixtures, flammability limits, 311
Gilsonite dust
flammability limits, 15
mixed with dusts, 25-26
Godbert-Greenwald furnace, 66-68
Grain, see Agricultural dust explosions
Grain dust probes, 294-309
backscattering aerosol monitor, 294-296
calibration, 299-301, 301-302
dust concentration in elevator, 307
field tests, 302-304
interference evaluation, 298-299, 301
isokinetic extractive sampler, 297-298
light-attenuation monitor, 296-297
response versus dust concentration, 304, 306-307
Grain elevators, 243
explosions, 90, 250-251
specifications, 304
test results, 306
Grinding sparks, electrical equivalent energy
versus ignition temperature, 167-168

H

Halon, maize dust explosions, suppression, 288-289
Hammermills, 193
Hartmann bomb, 70
Hartmann open tube, 314
Hazardous locations, 333
Hazardous materials, 324
Health and Safety at Work Act of 1974, 61
Heat of combustion, definition, 232
Heat release, rate, 266, 278
Heterogeneous combustion, 90
History, 342-347
agricultural dust explosions, 244-246
cement industry, 217
dust explosion studies in U.S., 344-345
eyearly studies of coal dust explosions, 343-344
early studies with gases, 343
industrial dusts, 345, 347
Hot surfaces, glowing accumulations of particles, 170, 172
Hybrid mixtures, 24-25
ignition probability, 310-322
versus dust concentration, 316-320
energy characteristics for sparks, 314-316
experimental procedure, 313-314
flammability limits, 311
minimum ignitable concentration, 311-312
minimum ignition energy, 311-313
synergism, 320-321
Hydrogen, mixed with dusts, 25-26

I

Ideal gas law, 6
Ignitability, 5
Ignition criterion, 65, 314
Ignition energy, 60, 310
correlation of cellulose concentration, 166
minimum, 171, 173, 311-313
correlation with combustible dust mixtures, 166
Ignition probability, see Hybrid mixtures, ignition probability
Ignition sensitivity parameter, 55-56
Ignition sources, 45-46, 265, 267
agricultural dust explosions, 248
burning bed, 209, 211
coal pulverizer, 199
dust fire/explosion probability, 218-219
effectiveness, 19
electrostatic discharges, 274-275
flame jets, 273-274
pipeline fire, 209-211
prevention, 165, 167-173
brush discharges, 171-174
glowing accumulations of particles on hot surfaces, 170, 172
impact sparks, 167-169
mechanical sparks, 167-170
static electricity, 170-173
pulverizer fire, 212-214
removal, 230
smoldering combustion nests, 275
T-injector, 209–210
trivial, 165

Ignition temperature, 60
minimum, 66–68

Impact sparks
electrical equivalent energy versus ignition temperature, 169
ignition sources, 275–276

Industrial bag filter unit, explosion vents, 269–270

Industrial explosions, 90

Inert gas system, coal pulverizer, incidents, 195

Inerting, 25–28, 158, 191
cement industry, 230
coil/methane mixtures, 121
crystal pulverizer, 216
mine versus laboratory data, 120
nitrogen, 162–164
pulverized Pittsburgh coal, 116–119
rock dust, 139
through vacuum, 163, 165
with solids, 165–166
steam, 214–215

Inhibitors, 5, 107, 138

Initiation, 124
source, coal dust explosions influence, 129–130

Intrinsically safe circuits, 336
Isokinetic extractive sampler, 297–298

K

K_v value, 33–34, 36–38
initial pressure influence, 40–43
lower explosion limit, 35–38
oxygen limit concentration, 38–40
temperature influence, 35–38

L

Lake Lynn Laboratory, underground mine, 109–111
Layer ignition temperature, 47
Lean flammability limit, 47
bituminous coal, 113
mixtures of Pittsburgh pulverized coal and methane gas, 115
oil shale, 115

Le Chatelier’s law, 25, 115, 320
Light attenuation monitor, 296–297
dust concentration correlation, 303
modifications, 308
regression equation, 301

Limestone rock dust
as inerting agent, 28–29, 116–119
mixed with coal dust, flammability limits, 28–29

Literature review, 348–350
Longwall ignition suppression, 149
Lower explosion limit, 161
brown coal dust as function of initial pressure, 41
temperature influence, 35–38

Lycopodium dust
autoignition temperatures, 46
explosion pressure, 162

M

Mach number, flame propagation, 13
Maize dust, reservoir characteristics, 286
Maize dust explosions
unsuppressed control, 284–286
suppression, 281–292
comparison of systems, 287–288
detection threshold pressure effect, 291
filed, 288, 290
systems evaluated, 286
Maize starch explosions, 272–273
Mass conservation equation, 12

Maurer discharges, 275
Maximum explosion pressures, 69–70
Maximum permissible oxygen concentration to prevent ignition, 69

Maximum pressure
mine dust explosion, 114
secondary dust concentration, 96–97
tube location, 98

Mechanical sparks, 167–170
Metal sparking characteristics, 324–331
minimum contact wheel speed, 327
minimum sparking speed, 328–329
propellant dusts, 324–325
test setup, 327

Methane
autoignition temperatures, 50, 54
coal dust mixtures, ignition probability, 316–318
explosion, pressure-time traces, 6–7
flammability limits, 13–14, 22
ignitions, 142
pockets in mines, 114
mixed with coal dust, 25–26
inerting ratio increase, 29–30
with added nitrogen, 25–27
pocket ignition, 138
Mill housing, explosion pressure shock resistant, 176
Mine dust explosion, 107–122, 138
bag igniters, 113–114
Bruceton Experimental Mine, 109–110
cannon ignitor, 114
can/methane mixture, 115
can/natural gas mixture, 115–116
ignition of methane pockets, 114
inerting, 116–119, 121
laboratory and mine test facilities, 108–111
Lake Lynn Laboratory, 111
maximum pressure, 114
mine versus laboratory inerting data, 120
pulverized oil shale, 114–115
see also Coal dust explosion
Miners, killed or injured in explosions, 60, 124
Minimum cloud ignition temperature, 47
Minimum exploisible concentration, 47, 56, 60, 64–66
Minimum ignitable concentration, 320
probabilistic considerations, 311–312
Minimum ignition energy, 68–69
Minimum ignition temperature, 66–68
Mira Gel
maximum flame velocity and secondary dust concentration, 97
maximum pressure and secondary dust concentration, 98
maximum pressure and tube location, 98
particle size, 93, 95
secondary dust explosions, 96–97
Moisture content, secondary dust explosions, 99
Momentum exchange, 147
Mono-ammonium phosphate based powder, maize dust explosions, suppression, 288–289
N
Navy bean dust, secondary dust explosions, 95–96
NFPA 68–1978, 62, 223, 233
NFPA 69–1978, 233
NFPA 85E–1985, 233
NFPA 85F–1982, 193, 233
NFPA 497M–1983, 334
Nitrogen
inerting, 25–27, 162–164
neutralization, oxygen limit concentration, 40, 42
Nordtest apparatus, 65
“Normal” rich limit, 14
Notification of Accidents and Dangerous Occurrences Regulations 1980, 62
O
Oil shale
autoignition temperatures, 53–54
flammability limits, 20, 115
pulverized, 114–115
ORNL backscattering aerosol monitor, see Backscattering aerosol monitor
OSHA standards, 244
Overpressure, 74
maximum, 266
versus dust cloud concentration, 78–79
Oxygen
dust fire/explosion probability, 218
Oxygen concentration
maximum permissible, 69
Oxygen limit concentration, 33
as function of temperature, 38–40, 164
nitrogen neutralization, 40, 42
pressure influence, 43
temperature influence, 40
P
Particle diameter, 51
Particle size, 124
c characteristic diameter, 23
coal dust, 134–135
distribution, 93, 95
effect on lean limits, 22–24
minimum autoignition temperatures as
function of, 52–53
Passive barriers, 140–148
Pipes, 74
Pneumatic conveying, 74
Pocahontas coal, 114
Point source ignition, 19–21
Polyethylene
autoignition, 49
concentration versus ignition probability,
316–319
flammability limits, 13–14, 20
initial pressure effect, 22
particle size effect, 22–23
minimum ignitable concentration, 320
Polyethylene/ethylene mixture, series resis-
tance for ignition, 321
Polyethylene/methane mixture, series resis-
tance for ignition, 321
Pressure influence, 33
explosion pressure, 40–43
K_{se} value, 40–43
lower explosion limit, 40–43
oxygen limit concentration, 43
Pressure piling, 12
Pressure rise, 33–34
rate, 8–9, 69–71, 111
versus dust cloud concentration, 78–79
pulverized bituminous coal/limestone
mixtures, 118
Pressure-time evolution, 8–9
Pressure-time traces, 6–7
Pressure traces, dusts of different reactivi-
ties, 8
Pressure venting, 158
Prevention, 60, 158–189, 234
avoidance of explosible dust/air mixtures,
161–162
effective sources of ignition, 165, 167–
173
sugar dust explosion, 239–240
see also Design measures; Inerting
Primary explosion, 243
data, 251
probable location, 249
Propane, ignition source, 255–256
Protection, 60, 62, 139, 158, 281
Proximate analysis, definition, 233
Pulverized fuel, definition, 233
Pure food powder
particle size, 93, 95
secondary dust explosions, 96–97
Purple K, 119, 147
R
Rank, definition, 233
Rapid action valves, 186–188
Recoil forces, 178
Relief device, actuation, 177
Reporting of Injuries, Diseases and Danger-
ous Occurrences Regulations, 62
Residual risk, acceptable, 276–277
Reynolds number, 12
Risk
assessment, 265
definition, 277
Rock dusting, 139
Rotary-vane feeder, 183, 185–186
Run-of-mine, definition, 233
S
Safety, 217, 342
Scattering probe, regression equation, 302
Secondary dust explosions, 90–105, 243
baghouse dust, 96–97
experimental setup, 91–93
flame acceleration tube, 91–92
Mira Gel, 96–97
moisture content, 99
navy bean dust, 95–96
photographic studies of dust dispersion
process, 101–102, 105
pressure-time histories, 93–94
pure food powder, 96–97
see also Flame acceleration tube
Self-heating, dust fire/explosion probability,
219
Shock waves, 138
Silo
concrete covers, 180–181
flame jets, 273
236-m3 explosion vents, 272–273
preventive actions, 240
Smoldering combustion nests, ignition
sources, 275
Solids, inerting with, 165
Spark
discharge, extended over time, 172
duration, 69
ergy characteristics, 314–316
ignition energy, 56, 58
ignition test, electrical equipment testing, 340–341

see also specific types of sparks
Sphere apparatus, 64, 70
Spontaneous combustion, dust fire/explosion probability, 219
Static electricity, prevention, 170–173
Static pressure
as function of length of coal dust zone, 132–134
initiation sources, 130
St, class, 63, 70–71, 268–269, 281
Steel friction sparks, 170, 171
Steel grinding sparks, 169, 171
Sugar dust explosion, 234–242
accident investigation, 238
dust accumulations, 239
factory characteristics, 234–235
filter units, 240–241
maximum pressure as function of concentration, 237
minimum explosion energy as function of particle size, 238
parameters, 235–238
prevention and protection measures, 239–240
rate of pressure rise as function of particle size, 237
Sugar production process, granulation phase, 235
Sulfur dust, autoignition, 49
Super K, 119
Suppressants, 281
comparison of effectiveness, 287–290
critical mass, 283
requirements, versus vessel volume, 185
Suppressed explosion, wave diagram, 146
Suppression, 281
effectiveness, 282, 284
failed, 284–285
pressure/time history, 283
suppressor propelling agent pressure influence, 287–288
technology, 282
test vessels, 284–285
test theory, 282–284
Suppression barriers, 138–150
flexible barrier, 145
passive barriers, 140–148
rigid barrier, 144
triggered barriers, 142–143, 148–150

T

Temperature influence, 33
maximum explosion pressure, 35–38
oxygen limit concentration, 40
Thermal autoignition, 19–21, 56–58
Thermocouples, 143
Titanium grinding spark, 167
Titanium/rust impact sparks, 168
Tremonia Experimental Mine, 125
Triggered barriers, 142–143, 148–150
Turbulence
burned gas eddies, 10
burning velocity effect, 10
decay, effect on coal dust explosions, 9–10
Turbulent flame acceleration, 11–13
Turbulent reacting flows, 90
Two phase flows, 90

U

UL 913, 336
Ultimate analysis, definition, 233
Underground explosion, 107, 138
United States
agricultural dust explosions, 244–246
history, 344–345
record of explosions, 245–246
Unsuppressed explosion, wave diagram, 146
Upper explosible limit, 161
USBM light attenuation monitor, see Light attenuation monitor

V

Vacuum, inerting through, 163, 165
VDI 3673, 62–63, 70, 72, 268–273, 278
VDI guideline 3673, 177
Vented dust explosion, 266–269
Vented dust explosions, 266–269
Ventilation, 142
Ventilation apparatus, 142
Vertical tube apparatus, 63
Volatile ratio, 220
Volatile, 51
yield, autoignition temperatures, 53
W
Water
maize dust explosions, suppression, 288–289
passive barrier, 140–146
Water barrier, 152–157
results, 156–157
test conditions, 153, 155–156
test layout in underground gallery, 156
water spray photograph, 155
Water barrier, 152–155
Water vapor, as inerting gas, 28–29
W-mortar, 127