Subject Index

A
Acoustic wave microsensors, 153, 154(figs), 155(table)
Activation energy, glassy polymers, 255
Aging, physical, nature of glass transition, 17
Alkali borate, 185
Alkali thioborate, 185
Amorphous materials, 1(overview)
Amorphous phase, glass transition, 17
Analytical techniques, glass transition in polymers, 75, 174, 202, 211(table)
Assignment of glass transition temperatures, 13-16, 75, 137
ASTM Standards
D 83, 13
D 695, 281
D 3418, 13, 228
D 4065, 13, 90
D 4092, 13, 90
E 37, 13
E 375, 13
E 831, 76
E 1142, 13
E 1356, 1, 13, 76, 228
E 1363, 81, 82
E 1545, 1
Automotive coatings, 293, 295(table)

B
Biaxial orientation, poly(ethylene terephthalate)(PET), 239
Blocks, 50
Borate, inorganic glasses, thermal properties, 185

C
Calorimetric studies, glass transition phenomena, 120
Calorimetry, glass transition of ionomers, 214
Carbon/epoxy composites, 277, 283(table), 285(table), 288-289.tables)
Chalcogenide, inorganic glasses, thermal properties, 185
Coatings, automotive, 293, 295(table)
Composition and behavior of polymeric materials, glass transition measurement, 50
Compressive mode, poly(ethylene terephthalate)(PET), 239
Condensed moisture, discussion, 4
Cooling exotherm, 137
Cooling rate, 137
Copolyester, 202
Crosslinking, 88
Crystallinity, 88
Cure, elastomer systems, 226

D
Dielectric properties, 108
Dielectric relaxation, 32
Dielectric thermal analysis for glass transition temperatures, 108
Differential scanning calorimetry (DSC), assignment of glass transition temperatures
automotive coatings, 293, 295(table)
elastomer systems, 226
epoxy composites, 277, 283(table), 285(table), 288-289(table)
instrumentation, 175(fig)
inorganic glasses, 185
liquid crystal polymer, 202
measurement, 50, 75, 120, 174, 226
oriented poly(ethylene terephthalate), 239
overview) 1
polymers, 174
structural relaxation process, 32
thermal curves, 137
DSC. See Differential scanning calorimetry.
Dynamic elastic storage modulus, 255
Dynamic mechanical analysis for T_g
automotive coatings, 293, 295(table)
determination in polymers, 88
elastomer systems, 226
glassy polymers, 255
liquid crystal, 202
toughened epoxy composites, 277, 283(table), 285(table), 288-289(tables)

E

Elastomers, measurement of glass transition temperature, 226, 230(table), 232(table)
Epoxies, 108
Epoxide compositions, 277, 283(table), 285(table), 288-289(tables)
Ethylene-propylene-diene monomer (EPDM), measuring glass transition temperature, 269, 273-274(tables)

F

Fiber orientation effects, toughened epoxy composites, 277, 283(table), 285(table), 288-289(tables)
Fictive temperature, 32, 50, 120, 137
Flexural plate wave (FPW), 153
Frequency effects, 255, 277, 283(table), 285(table), 288-289(tables)

G

Gases, high pressure, polystyrene plasticization, 165, 170(table)
Germanate, inorganic glasses, thermal properties, 185
Glass transition, 17, 50, 239
Glass transition region, time dependencies, 32
Glass transition phenomena, calorimetric studies, 120
Glass transition temperature, T_g
acoustic wave microsensors, 153
assignment of values, 13-16
assignment of values, using thermomechanical analysis, 75, 137
automotive coatings, 293, 295(table)
calorimetric studies, 120
definitions, discussion, 13-16, 32, 165
determination by dynamic mechanical methods, 88
determination by thermal analysis, 17
dielectric analysis, 108
differential scanning calorimetry, 137, 174
DSC thermal curves, 137
effects of moisture, discussion, 4 epoxy compositions, 277, 283(table), 285(table), 288-289(tables)
ethylene-propylene-diene monomer (EPDM), comparison of measurement techniques, 269, 273-274(tables)
glassy polymers, 255
inorganic glasses, 185
ionomers, 214, 216(table)
liquid crystal polymer, 202
measurements by DSC, 50, 174
measurements, comparative, 174, 234-236(tables), 269, 273-274(tables), 273-274(tables), 293, 295(table)
measurements, discussion, 6, summary, 302
measurements in elastomer systems, 226, 234-236(tables)
oriented poly(ethylene terephthalate), 239
phenomenology of structural relaxation process, 32
poly(ethylene terephthalate), 239
polymeric materials, 50, 137, 174
polystyrene plasticization, 165
stress relaxation, 32
structural relaxation, 32, 44(table)
temperature dependence, 32
thermal curves (DSC), 137
thermomechanical, 174
thermo-optical, 174
thin polymer films, 153
toughened epoxy composites, 277, 283(table), 285(table), 288-289(tables)
Glasses, inorganic, transition and heat capacities, 185
Glassy polymers, 255
Grafts, 50

H

Halide, inorganic glasses, thermal properties, 185
Heat capacity
carbon, 127(figs)
inorganic glasses, 185
polyethylene, 29(fig)
Heat/cool rate (DSC), 137
Heat-flow calorimeter, 165
Heating rate (DSC), 137
High-pressure calorimetry, 165, 167(fig)
Hot state, 174
Hysteresis, nature of glass transition, 17, 23(fig)

I

Inorganic glasses, thermal properties, 185, 197(table)
Instrumental factors, Tg, 88
Instruments, thermomechanical analyzer, 77-78(figs)
Ionic domains, 214
Ionomers, glass transition, 214, 216(table)

L

Linear thermodilatometry, 75
Linear viscoelastic test methods, 88
Liquid crystal polymer, glass transition, 202
Liquid, nature of glass transition, 17
Loss factor, 108, 113(fig), 115(fig)

M

Measurement of glass transition temperature
comparative methods, 174, 234-236(tables), 269, 273-274(tables), 273-274(tables), 293, 295(table)
dielectric analysis, 108
differential scanning calorimetry, 174
thermomechanical analysis, 174
thermo-optical analysis, 174
Measurement of temperature, 6, 137
Mechanical relaxation, glass transition of ionomers, 214
Mechanical testing, toughened epoxy composites, 277, 283(table), 285(table), 288-289(tables)
Mesophase
liquid crystal polymer, 202
nature of glass transition, 17
Metal substrate, 293, 295(table)
Microsensors, acoustic wave, in thin polymer films, 153
Microphase separation, nature of glass transition, 17, 214
Mobile amorphous phase, glass transition, 17, 239

Moisture, Tg determination in polymers, 88
Moisture, condensed, discussion, 4

N

Nanophase, nature of glass transition, 17

O

Onset temperature, 137
Operational definition, 17

P

Peak temperature, 137
Penetrometry, 75
Permittivity, 108, 113(fig), 115(fig)
Phosphate, inorganic glasses, thermal properties, 185
Physical aging, 50
Plasticization effect of dissolved gas, 165
Plasticizers, 50, 165
Polycarbonate, 255
Poly(ethylene terephthalate)(PET), glass transition temperatures, 174, 180(table), 239, 240(table), 242(table), 246(table), 249(table)
Polymer-based materials, glass transition temperatures
acoustic wave microsensors, 153
blends, glass transition measurements by DSC, 50
dielectric analysis, 108
differential scanning calorimetry, 174
DSC thermal curves, 137
elastomer systems, 226
glass transition, discussion, 4
glassy polymers, 255
heat capacity, 29(fig)
ionomers, 214
measurement systems, comparison, 179(table)
mechanical methods for Tg determination, 88
polystyrene plasticization, 165
Tg measurements by DSC, 50, 88
temperature measurement, discussion, 6
thermodynamic transition, 50
thermomechanical analysis, 174
thermo-optical analysis, 174
thin films, 153
transition behaviors, 153
Polymer gas interactions, 165
Polymer plasticization, 165
Polystyrene(PS), 165, 174, 255
Poly(vinyl acetate), 255
Polyvinylchloride, 108, 255

R

Relaxation properties, thin polymer films, 153
Residual entropies of glasses, 120, 124(table)
Rigid amorphous phase, glass transition, 17, 50, 239
Roofing materials, mechanical testing, 269

S

Salt groups, in relation to glass transition of ionomers, 214
Semicrystalline materials, 1(overview)
SH-APM. See Shear horizontal acoustic plate mode.
Shear horizontal acoustic plate mode (SH-APM), 153
Silicate glasses, thermal properties, 185
Simultaneous differential scanning calorimetry, 174
Softening temperature \(T_g \), 75, 239
Solid, nature of glass transition, 17
Strain, nature of glass transition, 17, 24(fig)
Stress relaxation, 32
Structural relaxation process, 32
Surface acoustic wave (SAW), 153

T

\(T_g \) criterion, instrumental factors, 88
\(T_g \), glass transition temperature, 32
\(T_s \), softening temperature, 75
Temperature calibration, 75
Temperature dependence of macroscopic properties in glass transition region, 32
Temperature measurement assigned glass transition discussion, 6
Tensile mode, poly(ethylene terephthalate), (PET), 239
Thermal analytical techniques liquid crystal polymer, 202, 211(table)
nature of glass transition, 17 overview, 1

310 ASSIGNMENT OF THE GLASS TRANSITION

\(T_g \) determination in polymers, 88, 202
Thermal analysis, toughened epoxy composites, 277, 283(table), 285(table), 288-289(tables)
Thermal curves (DSC), 137
Thermal/mechanical history, \(T_g \) in polymers, 88
Thermal properties, inorganic glasses, 185
Thermoanalytical methods discussion, 4
Thermodiastometry, 75
Thermodynamic transition, time dependent, 50
Thermomechanical analysis (TMA) assignment of glass transition temperatures, 75
automotive coatings, 293, 295(table)
epoxy composites, 277, 283(table), 285(table), 288-289(tables)
in polymers, comparison of results, 174
liquid crystal polymer, 202
oriented poly(ethylene terephthalate), 239
Thermo-optical analysis (TOA), 174, 175(fig)
Thermoplastics, 88
Thermosets, 88
Thicknes/shear mode (TSM), 153
Thin polymer films, 153
Thioborates, inorganic glasses, thermal properties, 185
TMA. See Thermomechanical analysis.
TOA. See Thermo-optical analysis.
Transition behavior, thin polymer films, 153
TSM. See Thickness-shear mode.

U

Ultrasonic, 153
Uniaxial orientation, poly(ethylene terephthalate)(PET), 239
Upper use temperature, 277, 283(table), 285(table), 288-289(tables)

V

Viscoelastic test methods, 88
Viscosity, 32
Vitreous state, 120
Vulcanization, elastomer systems, 226