Subject Index

A

Acoustic emission, 509
Adhesive joints, 556
Aging, strain, 350
Aircraft structure, 631
Aluminum and alloys
2024-FC, 376
2024-T3, 223, 243, 256, 303
2024-T351, 376
6061-T651, 284
7075-T651, 652
aluminum-lithium, 600
thin sheets, 631
Anisotropy, 600
Applied load, 698
Applied stress, 223, 243
Arcan specimen, 256
ASTM standards
A 515, 107
A 516, 54
A 533, 142, 715
E 399, 178, 272
E 813, 178, 587
E 1152, 178, 272
E 1290, 126
Asymptotic fields, 673

B

Bending, 284, 391
Bonding, 587
Bond thickness, 556
Bridge indentation method, 447

C

Carbon/epoxy composites, 486
Center-crack tension specimens, 284, 336
Ceramics, 447
Charpy tests, 732
Chevron notch method, 447
Cladding, 417
effects, 600
Cleavage, 199

Compact tension specimens, 43, 178, 272, 284, 376
Composites
carbon/epoxy, 486
lamina, 531, 486
metal matrix, 461
Computer code verification and validation, life prediction, 779
Constant amplitude loading, 600
Constant extension rate test, 698
Constraint, 43, 556, 54, 715
crack tip, 178, 391
effects, 142, 284, 321
factor, 223
loss of, 3, 178
Controlled surface flaw method, 447
Crack bridging, 509
Crack closure, 509
Crack extension method, 86
Crack face separation profiles, 284
Crack front tunneling, 303
Crack growth, 199, 223, 391
Creep, 673
directions, 531
ductile, 391
fatigue, 600, 617, 652
intermittent, 698
monitors, probes, 799
rate, 509, 617
resistance curves, 698
stable, 256, 447, 531, 822
theory, 652
Crack initiation stretch, 284
Crack initiation toughness, 43
Crack mouth opening displacement, 486
Crack resistance curves, 361
Cracks, 715
corner, 799
environmentally assisted, 698
interfacial, 86
semielliptical, 430
shallow, 126
subclad, 417
surface, 86, 107, 779, 799
Crack tip, 3
blunting, 617
constraint, 107, 178, 391
fields, 178, 631
opening angle, 199, 243, 303
opening displacement, 43, 54, 256, 376, 556, 763
E 1290, 126
estimating, 336
three-dimensional, 223
shear decohesion, 652
Crack tunneling, 223
Creep crack growth, 673
Cyclic fatigue, 509
Cyclic loading, 617

D
Damage, notch-tip, 486
Damage zone model, 531
Defect assessment, 336, 822
Deformation, 54
Deformation, nonlinear, 447
Deformation, plastic, 417
Dimple, 652
Disk shaped specimen, 272
Dispersoids, 652
Displacements, 284, 486
Displacement test, rising, 698
Domain integral procedure, 715
Double-edge notched tension specimens, 43, 587
Ductile failure, 86
Ductile fracture, 43, 142
Ductile tearing, 321
Dynamic toughness characterization, 732

E
Eddy current probes, 799
Embrittlement, locally intensified straining and aging, 350
Engineering Treatment Model, 336, 763
Environmentally assisted cracking, 698
Extension rate test, constant, 698

F
Failure assessment method, R6, 822
Fatigue precrack, 447
specimens, 698
Ferrallium, 255, 732
Ferrite, 732
Finite element analysis, 272, 531, 572
constraint characterization, 556
Engineering Treatment Model, 336
generically nonlinear, 631
modeling, 86
plane-strain, 126
stress triaxiality characterization, 556
three-dimensional, 3, 223
weldment specimen, 391
Flaw assessment, 763
Flaw, finite length, 430
Flight spectrum loading, 600
Four-point bend specimen, 361
Functionally graded material, 572

G
Glass/epoxy panels, 531
Grain boundaries, 652
Graphite/aluminum panels, 531
Graphite morphology parameters, quantitative, 361

H
Hardwood, 587
Hold times, 617
HY-80, 54
HY-100 structural steel, 142

I
Impact loading, 715
Impact toughness, 732
Inclusions, 652
Indentation fracture method, 447
Inertial effects, 715
Inner surface flaws, 430
IN718-STA1, nickel-base superalloy, 284
Integrated Reactor Vessel
Material Surveillance
Program, 272
Interface, bimaterial, 86, 321, 336, 376
Interlayer, 572
Interleaf specimen, 391
Iron, nodular cast, 361

J

Jc, 142, 447
\(J \)-integral, 43, 54, 86, 107, 142, 272, 284, 361, 376, 391, 556
modified, 763
Joints, adhesive, 556
Joints, bimaterial, 376, 572
Joints, welded, 361
Joints, mismatched, 336
J-Q methodology, 107, 556
J-R curves, 272, 587
\(E \) 1152, 178, 272
J-resistance curves, 284

L

Laminates, 531, 486
Leak-check port specimens, 799
Life prediction computer code, 779
Lithium, aluminum-lithium alloy, 600
Loading, 284
constant amplitude, 600
history dependent conditions, 673
minimum, hold, 617
monotonic, 178, 199
prediction, 531
static, 361
test, rising, 698
unloading compliance technique, 361
Load separation, 86
Loss of constraint, 3, 178

M

Microtopography reconstruction, 303
Mismatching, 361
effects, weld metal, 321
joints, estimate, 336
strength, 336, 376, 391

Modeling
Bodner-Partom viscoplastic constitutive, 715
computerized life prediction, 779
crack tunneling, 223
damage zone, 531
failure prediction, 461
finite element analysis, 54, 86
metal matrix composite system, 461
numerical, 673
three-dimensional crack model, 430
Mode I crack growth, 199
Mode I/Mode II stable crack growth, 256
Morphology parameters, quantitative graphite, 361

N

NASCRA, 779
Nickel-base alloy, 284
Notch-tip damage, 486
Numerical modeling, 673

O

Orientation, 600

P

Paper, 587
Peak stress location, 572
Plane-strain bending, 391
Plane-strain finite element analysis, 126
Plane-strain fracture toughness\(E \) 399, 178, 272
Plane-strain Mode I crack growth, 199
Plasticity, 461
Plates, thin, 631
Plates, wide, 336, 350
Plate theory, 631
Profiling, 284
Q
Q-stress, 178

R
R6, 822
Radiography, X-ray, 486
Rate sensitivity, 715
R-curves, 376, 447, 509
Reconstruction, microtopography, 303
Recycling, 587
Rolling orientation, 243
Rotation correction, 142

S
Safety analysis, 3
Safety assessment, 417
Scanning electron microscopy, 509, 556
Scatter, 732
Shear decohesion, 652
Single-edge bend specimen, 732
Single-edge notch bend specimens, 126, 376, 715
Single-edge notched tension specimens, 43, 284, 587
Single specimen technique, 86
Small-scale yielding, 178
Softwood, 587
Space shuttle rocket motor, 799
Steel
A 515, 107
A 516, 54
A 533, 142, 715
D6AC, 799
HY-80, 54
HY-100, 142
stainless, 732
welded, 350
Strain, critical, stress modified, 54
Strain aging, 199
locally intensified, 350
Strain hardening, 3
Strain rate sensitivity, 715
Strength mismatch, 391
Stress, 486
applied, 243
intensity factor, 417, 430, 509, 631
average, 779
local, 779
level, precracking, 799
peak, 572
peak applied, 223
ratio, 600
strain curves, 336
triaxiality, 391, 556
Striation, 652
Structural integrity, welds, 321

T
Tearing, ductile, 321
Tearing modulus, 142
Tearing resistance, 142
Tearing, stable, 223, 303, 391
Tensile loading, 531, 631
Tensile strength, 126
Tensile test, in situ, 361
Thermal shock, 417, 430
Thin sheet, 223
Three-dimensional crack model, 430
Three-dimensional crack tip opening displacement, 223
Three-dimensional finite element analysis, 223
Three-dimensional finite element model, 54, 86
Three-dimensional loss of constraint, 3
Three-dimensional nonlinear dynamic analyses, 715
Three-dimensional transverse constraint, 178
Three-parameter characterization, 199
Three-point bend specimen, 486
Titanium, 391, 461, 617
Toughness, 587
Toughness scaling, 107
Transformation induced dilation, 509
Transition toughening, 509
Transition zone, 256
Translaminar fracture, 486
T-stress, 142
Tunneling, 223
behavior, 243
crack, 303
Two-parameter fracture
mechanics, 107

U

Unloading compliance
technique, partial, 361
Upper shelf fracture, 142

V

Void growth, 43, 54
Void nucleation, 43

W

Warm prestress, 178
Welds, 321, 336, 361
electron beam, 376
geometry, 391
heat-affected zone, 350
undermatched, 391
Wide plate tension tests, welded,
350

Y

Yielding, small-scale, 178
Yield strength, 376, 587

X

X-ray radiography, 486

Z

Zirconia, 509