Subject Index

A

Abrasion, 266
Abrasion resistance, 76
Acoustic emission, 117
Acrylic, 266
Aeration, 199
Alkaline phosphatase, 319
Aluminum, 76, 297, 346, 400
Analysis of variance, 30
Anodic polarization, 60
ANOVA, 30
Arthroplasty, 297, 388, 409
Asperites, 136
ASTM standards
F 136, 45, 88
F 1408, 60
Atomic absorption
spectrophotometry, 179
Electrochemical spectroscopy, 179
Auger electron spectroscopy, 179
Axial fatigue endurance limit, 96

B

Bending fatigue strength, 150
Beta titanium alloys, 3, 60, 76, 88
Bone cement, 400
Bone marrow, rat, 306
Bone resorption, 297, 333, 388

C

Calcium, 319
Calcium phosphate, 306
Cell culture, 306, 357
Charpy impact energy, 96
Chromium, 88
Coating, 136
porous, 117, 150, 266
Cobalt, 88, 231
alloy, 400
Cobalt-chromium, 188
Cold forming, 17
Collagenase, 333
Corrosion, 346
behavior, 188, 199, 240
crevice, 231, 252
fatigue, 136
fretting, 219, 231, 357, 371
pitting, 252
resistance, 3, 45, 60, 163
Crack initiation sites, 136
Crack nucleation, 253
Cytokines, 297, 333
Cytotoxicity assays, 60

D

Dental casting alloys, 188
Dental implants, 3, 319, 346
Diffusion hardened, 96
Displacement amplitude, 219
Dissolution product, 219
Dulling, 266

E

Elastic modulus, 3, 60, 76, 88
Electrochemical behavior, 163
Elongation, 45
Etching, 136

F

Fabrication response, 60
Fatigue, 76, 88, 150
corrosion, 136
strength, 240
strength, bending, 150
Fibroblast, 333
Finite element analysis, 117, 150
Flexural moduli, 96
Forging, 17
Fourier transform infrared spectroscopy, 306
Fracture, 117, 199
Fracture toughness, 76
plane strain, 96

419
420 MEDICAL APPLICATIONS OF TITANIUM AND ITS ALLOYS

Fractography, 253
Frequency analysis, 409
Fretting, 96, 163, 252
corrosion, 219, 231, 357, 371

G
Gold-silver, 188
Grain size, 60

H
Hardness, 240
Heat treatment, 3, 88
Hip prostheses, 240, 252, 266, 357
Hip replacement, 400
Hot rolling, 17
Hydrogen peroxide, 231

I
Immersion tests, 45
Immunity, 163
Inclusion content, 60
Ion release, 400

J
Joint replacement, 333, 388
Joint simulator, 266

K
Knee prostheses, 240, 409

L
Limited contact-dynamic compression plate, 371
Load, applied, 199
Load cell, 199
Loading, 150, 252
Loosening, implant, 297, 388

M
Macrophage, 297, 333
Mechanical strength, 76

Melting
cold hearth, 17
plasma arc, 17
vacuum arc, 17
Microscopy, 60
light, 136
scanning electron, 136
Microstructure, 76, 117
Miller-Galante prostheses, 409
Modular joints, 252
Modulus of elasticity, 3, 60, 76, 88
Molybdenum, 60, 88

N
Nickel chromium, 188
Niobium, 45, 163
Nitriding, 266
Nitrogen diffusion hardening, 240
Nitrogen hardening, 266
Notch fatigue resistance, 76
Notch sensitivity, 117

O
Omega phase, 3
Orthopedic implants, 3, 60, 76, 88, 96, 231, 346
hip prostheses, 240, 252, 266
Osteoblasts, 319, 333
Osteocalcin, 319
Osteolysis, 388
Oxidation, surface, 163
Oxide chemistry, 179
Oxide film, 199
Oxide growth kinetics, 199

P
Palladium, 45
Palladium-silver, 188
Passivation, 45, 188
repassivation, 199
Passive dissolution, 179
Passivity, 163
Patellar component, 409
PH, 199
Physiologic solution, 306
Plasma arc melting, 17
Plasma spraying, 136
Plates, 371
Polarization anodic, 45
Polarization techniques, 188
Polyethylene, 266, 409
Polystyrene, 306
Prostaglandin, 297, 333
Prosthetic implants, 88, 297
Proteins, 179

R

Radiography, 388
Rat bone marrow cell culture system, 306
Rotary forging, 17

S

Saline solution, 231
Saliva, 188
Scanning electrochemical microscope, 199
Scanning electron microscopy, 136, 219
Scratch tests, 199
Shear loading, 150
Shear moduli, 96
Signal-to-Noise equations, 30
Simulated interstitial electrolyte, 179
Sintered titanium, 30
Spectroscopy, Fourier transform infrared, 306
Stainless steel, 60, 231, 371
Stress concentrations, 150
Stromelysin, 333
Surface damage, 252
Surface hardening, 240
Surface oxidation, 163

T

Taguchi experimental techniques, 30
Tantalum, 45, 163
Tensile properties, 60, 88
Tensile strength, 45, 96, 240
Thermomechanical processing, 17
TIMETAL, 88
Tin, 45
Transport, 357
titanium particle, 346

U

Ultrasonic inspection, 17
Urinary elimination, vanadium, 357

V

Vacuum arc melting, 17
Vanadium, 76, 297, 346, 357, 400

W

Wear, 219, 409
Wear debris, 357
Wear particles, 219, 266, 297, 388
transport, 346
Wear resistance, 76, 96, 240
Wettability, 240

X

X-ray photoelectron spectroscopy, 179, 306

Y

Yield strength, 30

Z

Zirconium, 45, 163