Subject Index

A

Aerospace industry, 104
Aging, 196, 330
 resistance, 65
Aluminum, 18, 56, 79
American Society of Mechanical
 Engineers code, 3, 353
Anvil block, 249
ASTM standards, 353
 A 707, 196
Austenite grain size, 160
Austenitizing, 33
Aviation industry, 104

B

Bearing journal wear, 129
Blow force, maximum, 249
Bottom pouring, 93
Bursts, forging, 241

C

Carbon, 79, 104, 196
 carbon monoxide reaction, 56
Chromium, 33, 330
Chromium ferritic steel, 267,
 317
Chromium-manganese-nickel
 alloy, 79
Chromium-molybdenum-nickel-
 niobium steel, 259
Chromium-molybdenum vanadium
 steel, 3, 241, 305
Copper precipitates, 196
Corrosion resistance, 104, 259
Corrosion, stress, 280
Cracking, premature, 148
Crack propagation, unstable,
 160
Crankshafts, grain flow, 129
Creep, 3, 280
 rupture strength, 267, 317
CRONIDUR, 104

D

Deformation, 249
Density difference, 305
Deoxidation, 18, 56
Detection and characterization,
 213
Die-forging hammer, 249
Disk forgings, 280
Disk manufacturing, process
 model development, 116

E

Electric Power Research
 Institute, 280
Electric utility applications, 280
Embrittlement, 3, 280

F

Fatigue
 crankshaft, 129
 life, 148
 low cycle, 330
FEM modeling, 224
Ferrite, 65
Ferritic steel, 267, 317
Finite element method, 224
Flake-like defect, 241
Flaking, 241, 344
Flasks, transport, 79
Fracture, 241
 brittle, 160
 ductile, 160
 toughness, 330
 toughness, plane strain, 18

G

Gear component forging, 241
Generators, 129
 rotors, 213
Geothermal power station, 259
Grain flow crankshaft, 129
Grain refining, 56
precipitates, 160
Grain size, 79
austenite, 18

H
Hammer, die-forging, 249
Hardness, aviation stainless steels, 104
Head-forming, 224
Hydrogen, 344
Hydrogen damage, 3
Hydrogen flakes, 241

I
Impact toughness, 160
Inclusions, effect on toughness, 305
Indication sets, 213
Induction hardening, 129
Ingot cogging, 224
Ingot production, 93
International business, 353

J
Joint ventures, 353

L
Ladle refining, 93, 344
Laves phase, 317
Lead liner, 79
Locomotive engine crankshafts, 129

M
Machining, 116
distortion following, 148
Manganese, 18, 79, 305, 330
Martensite, 160
Mechanical stress relief, 148
Models and modeling
computer assisted design, 224
development, simplified
forging, 116
FEM, 224
methodologies, 224
prediction, 305
Molybdenum, 3
carbides, 33
effect on creep rupture strength, 267, 317
effect on segregation, 305
in martensitic stainless steels, 104, 259
in pressure vessel steels, 3, 18
in steel forging bursts, 241
in superclean steels, 330

N
Nickel, 305, 330
in pressure vessel steel, 18, 33
in steel forging bursts, 241, 259
in transport casks, 79
Nickel chromium molybdenum vanadium, 241
Nil-ductile transition temperature, 18, 33
Niobium, 104, 259, 305, 317, 330
Nitriding, 129
Nitrogen, 104, 330
Nitrogen-alloyed stainless steels, 104
Nozzle integration, 56
Nuclear power plant forgings
pipings, 65
pressure vessels, 18, 33, 93
steam generators, 56
transport casks, 79

O
Open die forging process, 224
Optimization, forged disk manufacturing processes, 116

P
Piping, primary, 65
Power generation diesel engine crankshafts, 129
Precipitates, copper, 196
Pressure vessels
nuclear, 18, 33, 93
oil industry, 3
Pressurized slag remelting, 104
Process model development, 116
Punch forming, 224
Rhenium, 317
Rolls, 93
Rotors, 93, 213, 259, 267, 344
 superclean steels, 280, 305

S
Segregation prediction, 305
Silicon, 33, 56
Silicon killing, 18
Steam drum head integration, 56
Steel and steel alloys
 A 508, Class 3, 18
 A 508, Grade 1, 33
 AISI 304L, 65
 carbon-manganese-nickel alloy, 79
 chromium ferritic, 267, 317
 chromium-molybdenum (vanadium), 3, 241, 305
 copper-bearing, 196
 ferritic, 267
 forged, 79, 344
 high strength, 160
 low alloy, 196, 213
 manufacturing, 93
 SA508, Class 3, 56
 stainless, austenitic, 65
 stainless, martensitic, 104, 160, 241, 259
 superclean, 280, 305, 330
Stress corrosion, 280
Stress relief, 148
Structure property relationships, 196
Sulfur flaking, 344

Tensile strength, 259
Tension leg platform, 196
Thermal efficiencies, 267
Thermal flakes, 241
Transport flasks, spent nuclear fuel, 79
Tungsten, 317
Turbine disks or blades, 104, 317
Turbine rotors, 213, 259, 267, 280
Turbine, steam, 317, 330

Ultrasonic testing, 65, 241
rotor, 213
Upper-nose temper embrittlement, 33

Vacuum carbon deoxidation, 18, 56
Vacuum degassing, 344
Vacuum stream degassing, 93
Vanadium, 3, 104, 241, 305, 330
Vibration stress relief, 148

Welding, 148
Welds, 65
distortion and cracking, 148
Worldwide business, 353

Yield strength, 259