Subject Index

A
Agricultural pesticides, oil-based, 56-64
Airblast injector, 116 (illus)
Alfalfa spraying, 32
Anopheles, 6
Anophele larvae, 6
Ants, Argentine, 7, 10 (table)
Aphid, apple (Aphis pomi DeGeer), 25, 27 (table)
Applicators, 29 (see also Droplet applicators; Sprayers)
 aircraft, 85, 88 (illus)
Arboviruses, 6
Arrhenius equation, 51 (table), 52-54
ASTM Subcommittee E29.04 on Liquid Particle Measurement, 115
Atrazine flowables, 71 (table), 75-76 (tables), 76

B
Bacillus thuringiensis israelensis (BTI), 6
 efficacy of, 10 (table)
 exposure of mosquito larvae to, 9 (illus)
Beads, glass, 130, 131
Benefin, 4-5
Biological testing, 14, 21
Bleeding, 74, 75
Bloom tests, 74, 76

C
Calibration graticle, 130-131
Calibration media, 96-97
California viral encephalitis, 6
Carbaryl flowables, 71-73 (tables)
Carbohydrate oils, 56
Carboxymethyl cellulose (CMC), 66 types, 67, 71, 73-76
Cascade impactor, 95
Caterpillar, 134-135, 140
Chlorpyrifos, 7
 efficacy of, 10 (table)
Cockroaches, efficacy of pesticides against, 7, 10 (table)
Computer
 to control droplet size, 22
 in droplet sizing, 109
 to generate droplet-size parameters, 98
 in light scattering technique, 106
 to measure fringe pattern, 122
Corn cob fraction carrier, 8-9 (illus)
Co-suspending agents
 cost comparison, 73 (table), 76-77
 water soluble polymers, 65-77
Culicidae, 6
Culicine, 6
Cyhexatin, 24, 26
 effects of direct sprays, 27 (table)
 effects of residues, 26 (table)

D
DDT, 24
Deltamethrin, 24
Dicotyledons, phenoxy-resistant, 4
Diluent oils, 38, 40 (table)
composition, 41 (table)
residual weight percent, 48–50 (tables)
viscosities, 44–45 (tables)
viscosity-temperature relationships, 53 (table)
viscosity-volatility relationships, 51 (table)
Dipping-needle technique, 14
Disk
piezoelectric, 20
spinning, 14
Dose response effects, evaluating, 21
Drift potential, 24 (see also Wind deposition)
Droplet application (see also Droplet sizing instrument; Impulse droplet generator)
equipment, controlled, 14
characteristics of, 19–20
limitations of, 20, 21–22
practical applications, 20–21
single-droplet, 14
Droplet applicator, control (CDA)
effect on droplet patterns, 24 (table)
spraying techniques, 23–24
Droplet atomization
atomizers (see Spray, agricultural atomizers)
electrostatic, 57, 58, 64
monosize technique, 24, 136
process, 62
research on, 84
rotary, 144–146
Droplet sizing
analyzers (see Droplet sizing instrument)
data evaluation and interpretation, 98–100
impact on pesticide application, 81
laser droplet interferometry approach, 114–127 (see also Lasers)
light scattering techniques in, 102–107 (see also Light scattering techniques)
PMS system, 134, 141
equipment characterization, 135–139
field assessment, 139–140
imaging spectrometer, 128–133
size-frequency analysis, 83–93
techniques, 81
evolution of, 95
technology, 95–97
Droplet sizing instrument, 18, 61–62 (see also Laser)
data, 58
development of, 108–113
imaging spectrometer (PMS), 128–133
optical, 108–109, 109 (illus)
versus nonoptical, 95–96, 96 (table)
progress in, 94–101
selection and procurement, 97
spray analyzer (PMS), 134–141
system, 111–112 (illus)
use of, 81, 97–98
Droplets
controlled production and placement, 13–22
diameter size (see Number median diameter; Sauter mean diameters; Volume median diameter)
distribution, 137–141
effect on pest control efficiency, 23–28
evaporation, 38, 50, 52 (illus)
"firing," 18
formation of single droplet, 16, 17 (illus), 132
success, factors determining, 19–20
typical hydrostatic pressure cycle for, 19 (illus)
fringe pattern, 120-123
satellite, 22
size, 38, 50 (see also Droplet sizing)
control of, 14, 18-19
distribution, 62-64, 91, 95, 96, 102-107, 142
effects of, 14
predicting, 22
range, 18 (illus) 85, 87 (illus), 89-92 (illus), 92, 94, 146
sampling size and, 145 (table)
shape, 108
significance of, 94
velocity profiles, 105, 115, 125, 126 (illus), 129, 132, 133 (illus)
size-frequency analysis, 83-93
spectrum, typical, 18 (illus)
uniformity, 13, 14, 18-19
velocities, 62
size and, 105, 115, 125, 126 (illus), 129, 132, 133 (illus)
Duncan’s New Multiple Range Test (DNMRT), 25
Dursban, 7

E
Electrodyn sprayer, 15, 133
Endotoxin, protein, 6

F
Fenvalerate, 24
effects of direct sprays, 26 (table)
effects of residues, 25 (table)
Formulation (pesticide)
containing carbaryl, 71, 71-73 (tables)
development and quality control, 133
granular, 5-6, 7, 10 (table)
parameters, effects on pest control efficiency, 23-28
for prescription performance, 3-12
speciality, 3, 4, 11
used in viscosity/volatility study, 40 (table)
composition of, 41 (table)
Freeze-thaw stability, 74, 76
Freeze-thaw tests, 76

G
Granular mosquito larvicide, 5-6

H
Hemileuca olivae (Cockerell), 134
Herbicides, 65 (see also Pesticides; specific herbicides)
atrazine flowable, 75-76 (tables)
Hormoligosis, 26
Hydrocarbons, 56
Hyperexatation response, 28

I
Imaging techniques, 62, 64
droplet sizing and, 95 (see also Droplet sizing; Droplet sizing instrument)
optical methods, 116
nonintrusive, 108-109
PMS probe, 86 (illus)
two-dimensional spectrometer, 128-133
Imax method, 118-120
Impulse droplet generator, 15 (illus)
limitations and prospects, 21-22
liquid properties, 20
practical applications, 20-21
pulse characteristics, 19-20, 22
Impulse jets, 15
 principle of operation, 15-16
Ink jet technology, 14, 20, 22 (see also Impulse jets)
 principles of, 14-15
Insecticides, 65 (see also Pesticides)
 in nonvolatile diluent oils, 37
 undiluted liquid, 37

J
Japanese beetle (Popillia japonica Newman), 25, 27 (table)
Jets
 electrostatically driven, 15
 impulse (see Impulse jets)

K
Kaolin clay, 9
Knox Out, 7

L
Larvicide, granular mosquito, 5-6, 10 (table)
Laser (see also Droplet sizing instrument; Light scatter technique)
 beam behavior, 105
 Doppler velocimeter (LDV), 117
 droplet interferometry, 114-127
 limitations, 116
 gas, 109-110
 imaging system, 142-146
 PMS, 18, 20, 22, 84
 replacement, 106
 ruby, 81, 84, 87
Light scatter technique, 84, 116, 117 (see also Laser)
 alignment difficulties, 106
 calibration, 106
 computer process, 106
 constraints and precautions, 102-107
 limitations, 105
 mathematical analysis, 103-104
 sampling problem, 104-105
Lima bean disks, Henderson, 24, 25
Liquids (see Diluent oils; Nonvolatile oils; Viscosities; Volatilities)

M
Malvern Model ST1800 analyzer, 102, 103 (illus), 104
Microchip electronics, 84
Microsyringe, 14
Mistblower, 135-136, 138-139
Mist sprayer, 135, 138
Miticide, 26-27, 28
MKIII, 61, 62
Mosquito larvae
 efficacy of granular formulations against, 10 (table)
 feeding behavior, 6
 view of midgut, 8-9 (illus)

N
Nonintrusive single-particle counter (NSPC), 118, 119 (see also Imax method)
Nonvolatile oils, 54
 phytotoxicity, 37
 viscosity-temperature relationships, 53 (table)
Nozzles (see also Sprayers)
 air-atomizing, 110
 analysis of assemblies, 100
 aperture width effects, 144, 146
 flow rates, 90-92
 hollow cone, 90-92 (illus), 99 (illus)
 jet, 30-32
 tests, 90
 types, 90-92
Number median diameter (NMD), 85, 90
O

Organophosphate, 7
Oxadiazole herbicide, 4
Oxadiazon, 4, 5
comparative performance of, 5 (table)

P

Packing, 74
Permethrin, 25, 140
effects of, 27 (tables)
encapsulated, 27, 28
Pest control (see also Insecticides; Pesticides)
efficiency, 23–28
equipment, 29, 30 (see also Applicators; Droplet applicators; Sprayers)
integrated pest management (IPM), 134
strategies, 23
structural, 7–11
Pest control operator (PCO), 7
Pest/droplet interaction, 24
Pesticides (see also Formulations; Pest control; specific pesticides)
active ingredient (A.I.), 30
agricultural, 56–64
application research, 32–36, 83–84, 134–141
delivery mechanisms, 23 (see also Applicators; Droplet applicators; Sprayers)
direct injection, 35
direct metering of concentrations, 29–36
evaporation, half-life, 45, 46, 47 (table), 50 (table), 52 (illus)
flowable aqueous, 65
co-suspending agents for, 65–77
need for uniformity of total dosage, 13
residual weight percent, 48–50 (tables), 50, 52 (illus), 54
variation with time, 43 (illus)
Phagostimulants, 6
Phase/Doppler spray analyzer technique, 120–125
Photodiodes, 105
Photography, high-speed, 22, 95
Plant/droplet interaction, 24
Polymers
high-viscosity, 74
water soluble, 65–77
Pyrethroids, synthetic, 24, 27, 28

R

Redistribution phenomena, 24
Resistivity, 24
Resurgence phenomena, 27
Roping, 74, 76

S

Sandyland Experiment Field, 32
Sauter mean diameters, 98, 99 (illus), 117
Scanners, automated, 83–84
Spectrometer, two-dimensional imaging, 128
application to system spray studies, 132–133
calibration, 130–131
general operation of, 129
limitations of, 129–130
Spray
agricultural atomizers, 85, 87, 90–92, 144–146
analysis
laser imaging system, 142–146
PMS system in pesticide application research, 134–141
concentrated versus dilute, 24, 26
deflector cone system, 112 (illus)
Spray (cont.)
deposits, estimating, 21
diluents and adjuvants, 40 (table),
44-45 (tables) (see also Diluent oils)
distribution studies, 21
drop size analyzers (see Droplet size analyzers)
drop size-frequency analysis, 83-93
imaging spectrometer studies, 132
mixtures, forestry compositions, 41 (table)
viscosities, 37, 42-54
viscosity-temperature relationships, 39, 42-54
volatilities, 37-42, 44-54
patterns, 88 (illus)
Sprayers (see also Droplet applicators)
boom, 29
Electrodyn, 15, 133
exhaust, 135, 139
ground, 140
Herbi, 24, 25, 26
Hesston 500 swather, 32-36
injection nozzle, 30
jet nozzle design, 30-31
mixing characteristics, 32
Micron, 24, 25, 26
mist, 135, 138
nozzle distribution patterns, 32, 34
nozzles (see Nozzles)
Spray Triode Agricultural (STAg), 57
design, 57 (illus), 58-61
droplet sizing, 61-64
nozzle performance, 113
zirconia/tungsten setaceous emitter material, 59-61
Spraying
electrostatic, 56-64
ultra-low-volume (ULV), 37-38, 54
Suspension tests, 74, 76

T
Tetranychus urticae Koch (TSSM), 24-27
Thixotropes, inorganic, 77
Toxicants
patterns, 26
use near residential and commercial properties, 7
Turf herbicides, preemergent, 4-5
(see also Herbicides)
Turfgrass, 4
performance of oxadiazon formulations on, 5 (table)

U
Unimorph, 15

V
Van Gel B, 71 (table)
Van Gel B/CMC, 66-67, 68-70
(illus), 72-73 (tables), 73-74, 76
Van Gel B/Hercules WSP blends, 66
Van Gel B/Xanthan gum blend, 66, 68-70 (illus), 73, 75-76
Viscometer, Ostwald, 42
Viscosities
Brookfield, 71-73
versus yield, 66, 67-70 (illus)
defined, 38
measurements, 42, 44-45 (tables)
forestry spray mixtures, 37-39, 42-54
stability, 72 (table), 75 (table)
Viscosity-temperature relationships, 39, 42-51
volatilities and, 52-54
Volatile carrier vehicles, 38
Volatilities
 categories of, 46
 measurement of, 38
 droplet method, 40-42, 44-46, 47 (table)
 gravimetric method, 39-40, 44-46, 47 (table)
forestry spray mixtures, 37-42, 44-54
viscosity-temperature gradients and, 52-54
Volume median diameter (VMD), 85-86, 90-91, 98, 136, 138

W
Wind deposition, 135, 138-139
Wind tunnel test procedures, 89-90

Y
Yield value, 66-67
 Brookfield, 67 (illus), 69-70 (illus), 71
 Haake, 68 (illus)