Subject Index

A
Acoustic technique, 323
Aluminum
annealed
 stress response, 82–83
 stress-strain hysteresis loops, 83–84
chemical composition, 82
strain-controlled cycling, 81
6061-T6 aluminum, 68
Aluminum alloys
chemical composition, 340
 crack extension and closure data, 349
 crack-opening characteristics, 366
 fracture surfaces, 302, 304
 heat treatments, 341
 mechanical properties, 342
 threshold data, 344
 underaged, fracture morphology, 351–353
Artificial hole, 39
ASTM, international role, 6–9
ASTM E 647–83, 200, 245, 257
ASTM E 739–80, 257

B
 Bainitic 1Cr-Mo-V steel, tension-torsion test, 197
Biaxial cyclic stress, Dugdale model, 238–246
Biaxial fatigue, 120–134
 analysis, 129–133
 correction factors as function of aspect ratio, 129–130
 correlation factors, 131
 experimental observations, 128–129
 facets along crack length, 125–126, 129
 fracture surfaces, under pure torsion, 127, 129
 procedure, 122–128
 shear strain amplitudes, 131
 strain intensity equations, 131
 surface crack growth rates, 124, 128
 tubular specimen, 121–122
Biaxial stress, 194, 200, 233
dislocation substructure, 202, 205
elastic-plastic fracture mechanics parameters, 237–238
strain-based approaches, 235

C
Carbon steel, 142–143
CCP specimen, Dugdale model extension, 241, 244–245
Cell size, variation in size with cycles, 87–88
Closure gage, pushrod, 163–164
Complex loading, 214
Compliance method, closure measurement, 362, 364
Compression cycles, 337
Compression overload experiments, fatigue threshold, 342–343
Compressive stress, residual, ahead of crack tip, 161–162
Constant-amplitude loading
crack-opening characteristics, 366
fatigue threshold, 342–345
stress history, surface acoustic wave, 327–328
Copper, 39
 foil specimen, 49, 56–57
 polycrystal, 56
 sheet specimen, 48, 56
 single crystal
 crack nucleation (see Crack nucleation)
 dislocation structures, 40
 screw dislocations, 17–25
Crack
 formation, environmental effects, 31–32
 half length, 328
 iron, 108–109
 overload zone ahead of, 358
 point loading, 241
 size, acoustic measurement, 324–325
 traversing overload zone, 361–363

379
Crack branching, 308–309
 crack growth retardation, 161, 176
overload tests
 high baseline stress intensity factor levels, 177–178
 low baseline stress intensity factor levels, 178, 180
simultaneous growth of branches, 309
Crack closure (see also Sliding mode crack closure), 120, 157, 184, 233, 281, 323, 337–338, 357–375
 concept, 360–361
 development, 286–288
 discontinuous, 172, 174
 extent, prior to overload, 369–370
as function of stress intensity factor, 344–345, 347
influence of material, 369–372
measurement
 compliance method, 362, 364
 crack growth retardation, 163–164
 notches, 284–285
 mechanisms, 338–339
 near-threshold, 177
number of cycles of delay as function of overload plastic zone size, 366–367
oxidation, 192
plane-stress zone, 361
plasticity-induced, 162
 evidence for, 175–177
research needs, 374–375
responses of thick and thin, 167, 170
review, 360–366
short cracks, 372–373
stress range
 short cracks, 240
 change during fatigue loading, 189–190
transient, 167, 169–172
Crack coalescence, steel, 314
Crack depth
 acoustic predictions, 325
 effective, 137–138
 reliability of concept, 148, 150
Crack extension, as function of number of cycles following compression overloads, 345, 348
Crack face displacement, 245, 255–256
Crack flank, 178–179
 displacement, 265–267
 profiles, 278
 response, coordinate system and notation for describing, 264–266
 locking, 260
 Mode I wedging behavior, 273
 sliding response on first loading, 265, 267
 slip, 260
Crack front, irregular, crack growth retardation, 160–161
Crack geometry, surface cracks, 128–130
Crack growth (see also Biaxial fatigue; Elastic-plastic fracture mechanics parameters), 120, 214, 301, 312, 337, 357
antiplane shear mode, 219–221
before rearrest, 351
comparison of measured and calculated responses, 172–173
delayed retardation, 361–362
direction of maximum shear strain, 123, 128
directions, 120–121
early, environmental effect, 33–35
following single tensile overload, 367–368
 grain size effect, 315
history effect, 358
Mode II (see Mode II crack growth)
near-threshold, 338
process, 306
recommencement, 338
resistance
 alloy characteristics, 369
 closure extent prior to overload, 369–370
 cyclic fracture toughness, 371
 yield strength, 369, 371
retardation, 157–180
 after overload, 158
 closure transient, 167, 169–172
 crack branching, 161, 176–180
 crack closure, measurements, 163–164
 crack tip blunting, 159–160
 crack tip strain hardening, 160
 delayed retardation, 158
 displacement gage, 163, 165
 experiment, 163–164
 flanks, 178–179
 fractography, 167–169
 irregular crack front, 160–161
 mechanisms, 159–162
 microcracking, 161
 offset displacement, 164
 plasticity-induced closure, 162, 175–177
 residual compressive stress ahead of crack tip, 161–162
 residual hump, 175–176
 transient, 165–167
tensile, 362, 365
 threshold condition, 297
torsional, 121
Crack growth rate, 194
after single-peak overload, 358–359, 362, 365
comparison of Modes I and III, 222–223
correlations, 248–252
cyclic Mode III + static Mode I measurements, 225–227
dependence on cyclic plastic zone size, 246–247
ferritic steel, 372
function of crack length, Mode III, 219–221
function of effective stress intensity range, 345, 350
function of slip magnitude, 209
function of stress intensity factor, 200–201, 369–370
Mode III, 121, 226
versus plastic strain intensity, 222–223
nonproportional straining, 208–210
pure Mode I loading, 133
responses of thick and thin specimens, 165–166
retardation, following tensile overload, 357
secondary cracks, 129
sliding mode crack closure effect, 219
steady-state, variation with stress intensity factor, 342–343, 345, 347
striation spacing, 202
transient, ability of closure to account for, 172–174
ture curve, 222–223
under variable-amplitude random-sequence load spectra, 359
variation with overload ratio, 358, 360
versus total strain, 132
Crack initiation, 136
fatigue limits, 136
threshold condition, 287
Crack length
effective, 271
facets formed along, 125–126, 129
function of number of flight, 373–374
intrinsic, 290
per intrusion, as function of the accumulated plastic shear strain, 33–34
threshold relation with stress amplitude, 292–293
versus J-integral, 318–319
Crack mouth opening displacement, versus applied stress, 329–330
Crack nucleation (see also Persistent slip bands), 26–37, 39
after fatigue, 57
cycles to failure, as function of oxygen pressure, 35–36
environment effect
early crack growth, 33–35
formation of PSBs, intrusions and cracks, 31
experimental details, 27–29
geometrical difference between intrusions and crack nuclei, 30–31
mechanism, 36–37
persistent slipbands, 47–48
pure iron, 98
secondary hardening in inert environments, 31–33
sites, 106
grain boundaries, 114
slipband cracks, 47, 54
statistical aspects, 116–117
transgranular crack, 45–46, 52
values of fit parameters, 36
Crack opening
acoustic measurement, 325–326
microscopic measurement, 326–327
Mode I, proposed model, 227–228
SAW and SEM measurements, 328–330
stress, 323
intensity determination, 166
Crack opening displacement, 233
applied tensile stress, 326
measurement, 188–189
precracked specimen, 190–192
Crack path
development following single peak overload, 177–178
morphology, near-threshold growth, 345–346
relation to overload plastic zone, 178, 180
Crack plane, 208–209
Crack propagation, 26, 136, 157, 233
biaxial, 237–239
elastic-plastic fracture mechanics parameters, 246–248
life, relation with strain energy parameter, 320–321
Mode I, Paris law, 235–236
smooth specimen under constant stress amplitude, 189–190
threshold condition, 289
Crack propagation rate
function of cyclic stress intensity, 217
relationships, 337
relation with J-integral range, 315–317
stress intensity range relation, 285–287
Crack surface, interaction mechanisms, 272–274
Crack tip
 blunting, crack growth retardation, 159–160
 closure, reduced crack propagation rate, 190–192
 compliance measurements, 269–271
 displacement, relationship with plastic strain intensity, 218
 plasticity, EPFM analysis, 238–239
 residual stresses ahead of, 161–162
 slipband ahead of, 282
 strain hardening, crack growth, retardation, 160
Crack-tip clip gage
 anvil geometry, 265
 load-displacement traces, 272
 Mode II crack growth, 262–263, 265
 recording instrumentation, 265
Cross-slip, 17, 25
 role, 17–18
Crystal orientation, 17
 CSS unlocking model, 276–278
CTOD, formulas, 236–237
Cyclic deformation
 dynamic recovery during, 90–93
 mechanism, 88–89, 91
 structure breakdown resistance, 93
Cyclic hardening, 19–21
 copper single crystals, 19–20
 edge dislocation dipole accumulation, 17
 orientation effect of initial hardening rate, 20–21
Cyclic loading, 194
 out-of-phase, 195
Cyclic strain
 reduction, matrix effects, 78–79
 within cell, 78
Cyclic stress-strain behavior, 17, 83–86

D
Delayed retardation, 158
Dipolar walls, within persistent slipbands, 41
Discontinuous closure, 172, 174
Dislocation
 boundary sources, 89
 density, 87, 89, 91, 207
 generation rate, 93
Dislocation cells, 207–208
 arrangement, 208
Dislocation microstructure, 17, 22–24
Dislocation structures, 39–61, 194
 after fatigue, 57
compatibility of macroscopic and microscopic observations, 49, 52, 54
 extrusions and intrusions, 44
 in grain apart from edge of hole, 59–60
 material and test procedure, 56–58
 observation by TEM, 51, 60
 review of previous work, 42–49
 successive observation by optical microscope, 50, 58
Dislocation substructure, 202, 204–206
Displacements, residual, 175–176
Driving force, versus resistance, 290–291, 293
Dugdale model
 extended to CCP specimens, 241, 244–245
 superposition of loads, 241–243
 under biaxial cyclic stress, 238–246
 under plane strain, 253–255
Dynamic recovery, during cyclic deformation, 90–93
E
Edge crack, nonpropagation criterion, 287
EGM model, 42, 47, 54
Elastic-plastic fracture mechanics (see also
 Plastic zone size, cyclic), 122, 312
 crack-tip plasticity, 238–239
 parameters, 233–253
 biaxial stress, 237–238
 correlations, 258
 crack propagation, 246–248
 fatigue, 235–237
 small-scale yielding, 237
 statistical analysis, 257–258
 Elastic stress, maximum, 136
 relation to notch root radius, 145–147, 149–150
 Elber gage, 163, 165
 Ellipticity ratio, surface cracks, 128–130
 Endurance limit, 184
 Engineering alloys, 301
 characteristics contributing to resistance to crack growth, 369
 chemical composition, 303
 Etch pit method, 98–99
 grain orientation analysis, 100–105
 patterns with different orientations, 101
 Exoelectron emission, 69, 71
 Experimentation, 9–13
 Experiments, types, 10
 Extrusion, 26, 44, 67–79
 development, 67
experiment, 68–69
formation, stress-induced release of dislocations, 75–76
parabolic law, 74
periodic, 75
regular array, 71–73
specimen geometry, 68

Fatigue limit, 136, 281
Fatigue test, iron, 105–106
Fatigue threshold, 337–354
compression overload experiments, 342–343
concept, 338–341
constant-amplitude, 342–345
materials, 340–343
physical rationale, 338
significance, variable-amplitude loading, 338
tests, 341–343
uniqueness, 338
variable-amplitude, 345, 348–353
Ferritic steel, crack growth rate, 372
Foil specimen, preparation, 49, 56–57
Fractography, 194, 214, 301
crack growth retardation, 167–169
Fracture, 136
factory roof type, 228
fatigue limit, prediction, 137
lamellar, 226–228
Fracture mechanical characterization, Mode III crack growth, 217–218
Fracture mechanics, 281
Fracture surface, 302
factory roof type, 219–220
fatigued in vacuum, 308
microstructure effect, 308
morphology
effect of single peak overload, 168–169
near-threshold growth, 345–346
under pure torsion, 127, 129
SEM, 202–203
specimens under tension-tension cycles, 302, 304
AISI 4340 steel, 219–220
Friction, 260
Frictional shear stress, 269

Grain
containing persistent slipband, 77
diameter ratio, density distribution, 115, 117
dominating slip systems, 109–111
size, 281
surrounding cracks, 108–109
test area, 109–113
Grain boundary, 98
configuration, 111
interaction with persistent slipbands, 46–47, 52, 54
possible fatigue crack nucleation sites, 114
Grain orientation analysis, 98
etch pit method, 100–105
circular arcs, 103
locus of stereographic projection, 102–103
stereographic and orthogonal projections of vectors, 102–103
transformation equation, 101, 104

Humberside Study, 7–8

Inconel 718, 120
Intrusion, 26, 44
formation, 37
environmental effects, 31–32
geometrical difference from crack nuclei, 30–31
Iron
crack, 108–109
nucleation, 98
cross section observation, 113–116
etchants and etching conditions, 99
fatigue test, 105–106
grain
boundary configuration, 111
orientation analysis, 100–105
surrounding cracks, 108–109
test area, 109–113
heat treatment and mechanical properties, 105
microcrack, 107–109, 112
Schmid factor, 108–109, 111
frequency distribution, 116–117
S-N relation, 105–106
Iron-nickel alloy
crack branching, 309
fracture surfaces, 302, 304
J

J-integral, 233, 312
application to short cracks, 318
life prediction approach, 319–321
limitations in representation of small-crack
growth behavior, 315, 318
plane-strain situations, 248
prediction of crack growth initiation, 236
range, relation with crack propagation
rate, 315–317
short crack growth, 315
versus crack length, 318–319

L

Ladder structure, 39–40, 58, 60
formation from vein structures, 60
Law-like relationship, 11
Life, as function of peak normal strain, 196–197
Life prediction, 312, 314
J-integral approach, 319–321
Linear elastic fracture mechanics, 121, 136, 234
Linear fracture mechanics, 136
Linear notch mechanics, 136, 139–144
effectiveness for fatigue problems, 143–144
stress distribution, x-axis, 139
stress field
near root of notch, 140, 142
near tip of crack, 139–140
Loading mode, fatigue threshold effect, 294–296
Long crack growth, spectrum loading, 373–374

M

Measurement, 9–13
Microcrack, 184
crack growth retardation, 161
iron, 107–109, 112
Micromilling, 27
Microstructure, 337
effect on fracture surfaces, 308
Misorientation measurements, 81, 84–87
Mixed mode loading, 214
Mode I crack growth

-crack opening model, 227–228
crack propagation, Paris law, 235–236
rate, 133

Mode II crack growth, 260–279
coplanar, 261

-crack-tip, compliance measurements, 269–271
-crack-tip clip gage, 262–263, 265
cyclic unlocking and slip behavior, 267–269
definitions, 263–265
experiment, 261–263
implications, 277, 279
plastic replication technique, 262, 264
specimen geometry, 263
unlocking behavior
first loading, 265–266
modeling, 274–277
wedging behavior of crack flanks, 273
Mode III crack growth, 215, 219–221
fracture mechanical characterization, 217–218
fracture surface, 229
rate, 121, 266
versus plastic strain intensity, 222–223
Mohr’s circle, strain, combined loading, 130–131

N

Nondestructive testing (see also Surface
acoustic wave), 323
opening behavior of large cracks, 323
Nonpropagating crack, 136, 184–193
crack opening displacement, measurement, 188–189
crack tip closure, 190–192
critical length, 186–187
material and experimental procedures, 185
micro-Vickers indentation marks, 185–186
opening and closing behavior with stress
release annealing, 185–188
oxidation effect on closure, 192
slipband formation, 187–188
variation of length with stress amplitude, 293–294
Nonproportional straining, 194–212
crack growth rate, 208–210
dislocation substructure, 202, 204–206
experiment, 198–202
hardening mechanisms, 206–208
microscopic examination, 202–206
specimen geometry, 200
tension-torsion test, 196–197
Notch effects, 136–137
ordinary notches in fatigue, 145, 147–148
predicting method, 139
INDEX 385

shallow or extremely shallow notches in fatigue, 150–152
unifying treatment, 152–153
Notch fatigue, threshold models, 287, 289
Notch geometry, fatigue threshold effect, 294–296
Notch root
radius, 136–137, 160
states, 146
Notch size, fatigue threshold effect, 295–296

O
Optical microscope, successive observation by, 50, 58
Orthogonal projections, 102–103
Overloads, 357
effect and R-ratio, 368
Oxidation, 184
crack closure, 192

P
Paris law
equations, 257
Mode I crack propagation, 235–236
modified, 172
Pearlitic steel, 184
cracking composition, 185
mechanical properties, 186
microstructural parameters, 186
micro-Vickers hardness, 188–189
surface microstructure, 185
Persistent slipbands (see also Crack nucleation; Extrusion), 17, 39–40
appearance and disappearance, hysteresis loop, 43–44, 49
appearance at surface, 44, 52
crack nucleation at, 47–48
dipolar walls, 41
elongation rate, 76–77
exoelectron emission, 69, 71
fatigue cycle effect, 70
formation, 29
environmental effect, 31–32
grain containing, 77
growth, 75–76
importance, 67
interaction with grain boundaries, 46–47, 52, 54
ladder structures, 40, 42
formation mechanism, 48–49
matrix interface, 47
photoelectron microscope, 76
plastic shear strain amplitude, 29
plastic strain amplitude, 22–23
profile, 29, 31
protrusion height, 30, 32
review of previous work, 42–44
secondary hardening, 33
strain concentration, 76–79
surface profile, 42, 47
three-dimensional model, 40, 43
ultrahigh vacuum, 32
volume fractions, 21–22
Photoelectron microscopy, 67
persistent slipbands, 76
specimen geometry, 68
Plane slip, 206–207
schematic representation, 207
Plane strain, Dugdale model under, 253–255
Plane-stress zone, 361
Plastic deformation, 194
interlocking surface asperities, 273–274
Plasticity-induced crack closure, crack growth retardation, 162
Plastic replication technique, Mode II crack growth, 262, 264
Plastic shear strain
accumulated, crack length as function of, 33–34
amplitude, persistent slipbands, 29
Plastic strain
amplitude, persistent slipbands, 22–23
intensity, 217
relationship with crack tip displacement, 218
versus dissipated strain intensity, 224–225
versus Mode III crack growth rate, 222–223
Plastic zone
length, 236
local forces, 227–228
overload, 361–363
radius, 217–218
Plastic zone size, 136, 233
cyclic, 209–210, 241
crack growth rate dependence, 246–247
finite-width corrections, 244–245
formula, 210
overload, 370
forward, 160, 165, 167
number of cycles of delay as function of, 366–367
parameter, 236
relative, 141, 144
Plastic zone size—Continued.
 short cracks, 240
 stress intensity factor, 140
Poisson ratio, effective, 125
Polygonization, 91
A533B pressure vessel steel, blunted cracks, 159
Pushrod closure gage, 163–164

R
Rayleigh wave, stress components, 333
Reflection coefficient
 definition, 332–334
 measurements, surface acoustic wave, 329–330
 versus applied stress, 329–330
 versus applied tensile stress, 325
 versus normalized crack depth, 334
Residual compressive stress, 184
Residual stress (see also Linear notch mechanics)
 quantitative measurements, 331
 time-of-flight measurements, 331
Rotating bending fatigue, 136–153
 dimensions of notched specimens, 143
 elliptical hole in tension, 138–139
 notch effects
 ordinary notches in fatigue, 145, 147–148
 shallow or extremely shallow notches in fatigue, 150–152
 relation between notch geometry and crack initiation limit, 144
 reliability of effective crack depth concept, 148, 150
 test procedures, 144–146
R-ratio
 effects, 367
 high-baseline, 368
Rubbing fracture surfaces, 215
 frequency distribution, 116–117
 slip systems, 113
Screw dislocations, 17–25
 crystallographic characteristics of specimens, 18
 cyclic hardening, 19–21
 dislocation microstructures, 22–24
 double slip crystals, 24
 experimental parameters, 18
 persistent slipbands, 17
 saturation stress, 21
Secondary crack, 301
 association with striations, 302
 crack growth rate, 129
Secondary hardening, inert environment, 31–33
Sectioning technique, 27
Shallow notch, notch effects, 150–152
Shear mode, 215, 260
Shear strain, amplitudes, biaxial fatigue, 131
Shear stress
distribution, 210
push dislocation through wall, 207
BS 4360 50B sheet steel, 262
Short crack, 235, 312–322
 closure stress range, 240
 experimental procedure, 313
 growth
 mechanics and mechanism, 314–319
 rate, 321
J-integral approach to life prediction, 319–321
mechanism, 321
notches, 281–297
 crack closure development, 286–288
 crack closure measurement, 284–285
 crack propagation rate, stress intensity range relation, 285–286
 driving force, versus resistance, 290–291, 293
 effect of notch geometry and loading mode on fatigue thresholds, 294–296
 fatigue testing and stress intensity factor, 283–284
 limiting curve for nonpropagation of crack, 292–293
 material and test specimen, 282–283
 Tanaka-Nakai model (see Tanaka-Nakai model)
 plastic zone size, 240
 spectrum loading, 373
 strength properties and crack growth behaviors, 313–314
 tensile overloads, 372–373
Saturation shear stress, relation to dislocation density, 85
Saturation stress, 21
Scanning electron micrograph, persistent slipbands, 71–73
Scattering geometry, generalized, 332
Scattering theory, 332–335
Schmid factor, 98, 108–109, 111
Sliding mode crack closure, 214–230, 263–264
 cyclic Mode III + static Mode I crack growth measurements, 225–227
effect on crack growth rate, 219
 experimental procedure, 216–217
fracture mechanical characterization, 217–218
 literature review, 215–216
 longitudinal elongations, 227
 measuring procedure, 218–219
 Mode III striations, 228–229
 practical relevance of results, 229–230
quantitative characterization, 223–225
 scientific relevance of results, 227–229
 specimen diameter effect on influence, 224
 true crack growth curve, 221–223
Slip
decohesion, 301
 static and reversed, 270–271
Slipband, 301
 ahead of crack tip, 282
 associated with striations, 304–305
 cracks, nucleation, 47, 54
 formation, 187–188, 308
 secondary crack produced between, 302, 304
Slip systems, 108
 dominating, 98, 109–111
 frequency distribution of angles, 116–117
 orthogonality, 98
 Schmid factors, 113
Small crack (see also Surface acoustic wave), 120
 growth, 121, 323, 331
 effect, 121–122
Small-scale yielding, elastic-plastic fracture mechanics parameters, 237
Spectrum loading, 373–374
Stainless steel, 233
 threshold data, 344
AISI 316 stainless steel, 199, 238
Static recovery, microstructural changes, 91
Statistical analysis, elastic-plastic fracture mechanics parameters, 257–258
Statistical distribution, 98
Steel, 136, 157, 260
 crack coalescence, 314
 low-carbon, 281
 mechanical properties, 283
 low-strength, discontinuous closure, 174
AISI 4340 steel
 fracture mechanical characterization, 217–218
 fracture surface, 219–220
 properties, 217
AISI C1018 steel
 fracture mechanical characterization, 217–218
 Mode III
 crack growth rate, 226
 fracture surface, 229
 properties
Step-like fatigue crack, profile, 307
Stepwise loading sequence, precracked specimen, 190
Stereographic projection, 98, 102–103, 118–119
Strain
 concentration in slipband, 76–79
 intensity equations, 131
 Mohr’s circle, 130–131
 total, 195
 von Mises criterion, 125
Strain cycling, 81
 types, 196
Strain energy parameter, relation with crack propagation life, 320–321
Strain hardening
 crack tip, 160
 exponent, 211
 mechanisms
 dislocation cells, 207–208
 plane slip, 206–207
Strain intensity factor
 definition, 235–236
 dissipated, versus plastic strain intensity, 224–225
Strength reduction factor, 136
Stress
 amplitude
 threshold relation with crack length, 292–293
 variation of nonpropagating crack length, 293–294
 applied, effective fraction, 287
 average back, 209
 components, surface acoustic wave, 333
Stress concentration factor, 39, 136
Stress cycles, cruciform specimens, 198
Stress field
 generated by crack or notch, 139–143
 near root of notch, 140, 142
 near tip of crack, 139–140
Stress function, 254
Stress intensity factor, 136, 233, 290
against notch sharpness, 147–148
correction factor, 284
crack growth rate as function of, 369–370
cyclic, propagation rate and, 285–287
cyclic, propagation rate as function of, 217
effective, small cracks, 330–331
effective fraction, variation with crack length, 295–296
effective range, 293
fatigue testing, 283–284
high baseline levels, 177–178
implications, 354
low baseline levels, 178, 180
plastic zone size, 140
relation with nominal stress, 148, 150
threshold, 290
effective, 289
versus crack length, 294–295
variation following single compression overload, 345, 350
Stress ratio, 233
Stress release annealing, crack opening or closure behavior, 185–188
Stress state, 157
Stress-strain hysteresis loops, annealed aluminum, 83–84
Striation
appearances, 307–308
formation, 301–310
mechanism, 306
morphology, 304–306
secondary cracks associated with, 302
slipbands associated with, 304–305
spacing, 202
Strip yield zone, 238
Structural stability, 93–94
Substructural developments, 81–96
cyclic stress-strain behavior, 83–86
dislocation density, 87
dynamic recovery, during cyclic deformation, 90–93
experimental procedure, 82–83
mechanism of cyclic deformation, 88–89, 91
misorientation measurements, 84–87
structural stability, 93–94
substructure-stress relationship, 94–95
Substructure, as-extruded, 93–94
Surface acoustic wave, 323–332
cracking measurement, 326–327
crack opening measurement, 325–326, 328–330
crack size measurement, 324–325
reflection coefficient measurements, 329–330
transducers, 323
variable-amplitude stress history, 327–329
Surface crack
-crack geometry, 128–130
-ellipticity ratio, 128–130
growth
-cyclic loading, 130
-rates, as function of surface crack length, 124, 128
-semi-elliptical, 334
Surface roughening, 47
Surface states, 149–150
roots of extremely shallow notches, 151
Tanaka-Nakai model, 287–290
evaluation, 290–294
Tensile overloads, short cracks, 372–373
Tensile stress, applied
-COD versus, 326
-reflection coefficient versus, 325
Tension-torsion test, nonproportional straining, 196–197
Threshold condition, 281
Tilt boundary, 88, 91
Time-of-flight measurements, residual stress, 331
Titanium alloys, fracture surfaces, 302, 304
Torsional loading, 214
cyclic, 229
Transgranular crack, nucleation, 45–46, 52
Transmission electron microscopy
dislocation structures, 39
observation, 51, 60
substructural developments, 83
T-stress, 241, 251
Twin cantilever gage, 163, 165
Unlocking behavior
-modeling, 276
-comparison with experiment, 276–277
-model description, 274–276
precrack on first loading, 275–276
precrack on unloading, 276–277
Unlocking response, first loading, 265–266

V

Variable-amplitude loading, 157, 337, 357
fatigue threshold, 345, 348–353
significance, 338

Variable-amplitude stress history, surface
acoustic wave, 327–329
Vein structure, 39–40
ladder structure formation, 60
von Mises criterion, 125, 254

Y

Yield strength, 369, 371