Subject Index

A

Acoustic waves, 536–546
diffracted and mode converted signals, 541–542
distributed spring constant, 539–541
interaction with crack, 536–537
interface transmissivity, 539, 541
local stress intensity factor, 543–546
receiving through transmission and diffracted signals, 537–538
residual stress across interface, 542–543
shear wave signals, 542
ultrasonic transmission past crack, 539–540
wave propagation perpendicular to crack surface, 538–541
Airy stress function, 313
Alloys, 139, 171
Aluminum alloy, 121, 270, 528, 583–597, 640, 642–643
applied versus effective specimen geometry, 227–228
baseline propagation data, 571–572
chemical composition, 122, 584
compliance method, 587
constant load amplitude tests, 569–570
crack growth
baseline data, 428–430
rate variation, 37–38
crack opening stress intensity factor variation, 37–38
effective stress intensity range ratio, 124–125
fatigue loading variables rates, 142–143
mechanical properties, 123, 217, 584
overloads, 592–595
procedure, 584–585
properties, 529
specimen geometry, 584
stress intensities, 225, 228
stress ratio effect, 588–590
stress state effects, 590–592
tensile properties, 570
transmission coefficient, 539
Aluminum allow 2024-T3, 505–515
crack opening load, determination, 508–509
experimental procedure, 506–509
load-shedding procedures, 507–508
6% load-step tests, 509–513
18 and 30% load-step tests, 513–514
Aluminum alloy 2124, 300–316
chemical composition, 302
closure load, 308
crack growth rate, variation, 308–310
crack path morphology, 305, 309
crack propagation of long cracks, 304, 307–308
experimental procedures, 306
finite-element predictions, 305, 309
grain structure, 302, 306
long crack threshold data, 304, 308, 311
Aluminum alloy—Continued
mechanical properties, 303
numerical analysis, 306, 308
plastic zone shapes, 312, 314
stress intensity factor, variation, 311, 314
Analytical crack opening model, basic equations, 456
Asperities, 459-474
 crack tip
 between initial notch tip, 467-468, 470
 near, 468-471
density, 542
gemetric, 112, 116
initial notch tip, 468-470
model, 461
Asperity contact, 179, 181, 536-538
along fracture surfaces, 542
residual stress field, 537-538
ultrasonic techniques, 537
ultrasound interaction, 538-542
Asperity-induced crack closure, 164
Asperity strip, local stress intensity factor, 544
ASTM E 399, 113, 321, 324, 340, 340, 570, 574, 577
ASTM E 647, 175-176, 219, 227, 233, 253, 505-507, 515, 529

B
Backface strain, 96, 98, 172, 183, 186, 197, 247, 306, 308
far-field closure, 193-195
load-displacement date, 175-176
PMMA, 206-207
Bending fatigue, 260
Binary Fe-Si alloys
chemical composition, 114
compact-tension specimen, 113
fatigue crack propagation, 114, 116
grain size, 115
yield strength, 115
Block loading history, 282, 291-292
Bodner coefficients, Ti-6246, 363
Bodner-Partom constitutive relations, 363
BS 4360-50D, 261-262, 267-268
Budiansky and Hutchinson model, 59, 638

C
Calibration factor, 272
Carbon steel, 475, 480
Center-cracked panel, 319
closure transient, 332, 335
 crack profile, 332, 335
 loading, 321
overloads and underloads, 446-448
plastic zone size, 324, 326
Chevron region, 36
Clip gage, 262
compliance measurements, 17
Elber type, 262, 530, 640
locations for closure detection, 263
position, 587-588
Closure force
numerical definition, 384
variation versus mesh length, 387-388
Closure load, 270
aluminum alloy 2124, 308
defined, 273
versus stress intensity factor, 372-373
Closure parameter, 612
defined, 265
variation with statistical approach, 265-266
Closure transient, center-cracked panel, 332, 335
CMOD, 183, 187, 639
far-field closure, 193-195
gage, 219
versus load, 154-155, 374-377
load-displacement date, 175-176
measurements, 197
PMMA, 206–207
CMOD method, 172
Cochran’s test for equality of variance, 244
COD, 44, 270, 321, 598
closure/opening load definitions, 605–607
crack-tip strain and, 52, 54
dynamic, 541
versus load, 375–377
measurement procedures, 272–274
partially and fully open cracks, 48–50
pattern
crack face as function of size, 607
Type II crack, 603–604
various distances from crack tip, 606
profiles
applied load, 605
PMMA, 602–605
zero load, 602–603
statistical approach, 274
Compliance, 98–99
versus crack length, 275–276
fully open crack, 607
measurements, 17–18
before and after overload, 531, 533
 crack length, 154
with more than one linear part, 21
method
aluminum alloys, 587
global, 639
statistical approach, 274–275
Compliance-crack length equation, 207
Compressive loading, 62, 89
crack growth threshold behavior, 82–84
Constant amplitude cycling, 98–102
Constant-amplitude loading, 24, 30
aluminum alloys, 569–570
closure and opening profiles, 404
crack growth, 454
threshold, 383
crack opening load, 447–448
elastic and plastic singularities, 389
finite-element analysis, 403–409
single-spike overload, 409–411
strip yield model, 444–445
Constant-K\textsubscript{\text{max}} tests, 511–513
Constitutive model, 343–344
Copper
crack closure, 69–70
fracture surfaces, 66, 68
near-threshold fatigue crack growth rates, 65
CORPUS model, 438, 449–450, 641
comparison with strip yield model, 450–452
crack opening behavior, 449
landing gear loading, 452–455
Crack
peeling open, 127–128
plastic castings, 14
unzipping behavior, 216
Crack arrest, 558–559, 562
Crack closing load
absolute values, 610–611
divided by maximum applied load, 611
as function of crack length, 369–370
mean versus percent offset, 223
Crack closure, 5–6, 35, 139–148
analytical developments, 25–27, 641–642
applications, 642–644
averaging, 226
comparison of local and remote measurements, 125–128
concept, 132, 549
validity, 471
copper, 69–70
correlation based on, 524–526
cryogenic temperatures, 77
Crack closure—Continued
dependence on fatigue loading
variables, 124–126
direct observation, 16–17
Elber’s concept, 132
Elber’s definition, 586–587
Elber’s model, 140
experimental procedure, 141–142, 227–229
extent of, 560–563
far-field, 87, 102
versus near-tip closure, 104–108
fracture surface contacts, 14
as function of crack wake length, 569
importance, 230
indirect observations based on fatigue crack growth, 18–20
intrinsic and extrinsic factors, 44
level
determinations, 223
growth rates and, 144–145
load-cancelled displacement traces, 142–143
macrocracks, 10–11
microcracks, 9–10
Mode I and II, 57–58
near-threshold, 62–92, 224, 227, 311, 638
grain size, 70–71
microstructure effects, 65–74
yield strength, 65–70
nomenclature, 301
numerical aspects of relations, 21–25
progress, 520–521
sources, 150
at start of test, 224, 226
stress, 403
as function of applied stress, 354
structurally sensitive macrocrack growth, 14–16
surface, 595
technical approach, 222–227
technical significance, 7–8
test method, 519
three-dimensional nature, 134
thresholds, 93, 300
two-dimensional model, 25
under tensile load, 20
variable amplitude loading, 101–103
wake-induced, 59
Crack closure ligament model, 414–436
comparison with
Glinka’s crack growth data, 423–425
Liu’s crack growth data, 425–429
crack closure approach, 416–417
elastic and elastic-plastic stress distributions, 418–419
elastic stress fields, comparison with LEFM, 419
element schematic, 415–416
element width influence, 417–418
growth life, 427
Keyvanfar and Nelson’s data, 429–431
modified Paris law, 418
outline, 415–416
residual stress
field, in front of and in wake of crack, 420–422
redistribution, 419–421
specimen partitioning, 415
stress distribution change caused by element cut, 419–420
variation of opening stress with element width, 417
Crack closure model, 491–504
applications, 497–503
to surface crack propagation, 594–595
based on Forman’s equation, 523–525
crack closure, 520–522
crack closure tests, 519, 521
crack growth
at Cycle i, 494
law, 492
stress ratio, 516–527

crack propagation tests, 518–519
data correlation, 522–525
determination of parameters, 496–499, 501
examples, 497–499
history values, 493–494
material, 517–518
opening point selection, 492–493
rain-flow effect, 493–495
specimen design and manufacture, 518
tensile portion of stress cycle, 522, 524
truncation level, 502

see also Models
Crack closure points, as function of crack length, 484–486
Crack extension, constant-amplitude, 403
Crack face, COD pattern as function of size, 607
Crack-filling closure, 35
Crack front
overload, 533
plane strain/plane stress, 11–12
reproduction, 594–595
Crack growth, 171, 186, 197, 230, 260, 459
accelerations, 25
characteristics, 614–615
constant amplitude, 285–291, 454
correlation of J integral, 286, 288
residual stress effects, 425–429
crack closure ligament model, 416–418
crack opening, 354, 357
crack opening load, 445
cyclic, analytical model, 362
decreasing load threshold testing, 554–555
delays, 642
discretization, 443
elastic-plastic parameters, 288
experimental and predicted, 294–295
extremely slow growth rate, 15
finite-element analysis, 402
as function of stress intensity factor, 560–561
decreasing load threshold tests, 557
history, 365
indirect closure observations, 18–20
intergranular, 563
law, 441, 492
life predictions, 427, 491
mechanisms, 548
models, 437, 441–443
near-threshold, 557–559, 642–643
perturbation acceleration, 595
prediction, 27–29, 381, 455
fractography to check, 28–29
resistance, 5
retardation, 25
during constant amplitude loading, 257
overloads, 20–21
simplified landing gear load sequence, 452–455
simulation, 328, 330
small-scale yielding, 319–320
50D steel, 267–268
three-dimensional nature, 303
threshold, 380–397
constant amplitude loadings, 383
elasto-plastic stress-strain, 392
experimental setup, 382
no-growth threshold force, 393, 396
numerical simulation, 381–383
opening force, mesh independent determination, 390
plastic strain tensor variation, 390–393
propagation simulation, 384
transient, 638
Crack growth—Continued
under VA-loading, 25
Crack growth rate
against stress intensity factor, 507, 509–513
applied load, 612, 614
and closure levels, 144–145
at depth point, 589
differences in air and vacuum, 563
versus frequency, 114, 116
as function of effective stress intensity factor, 391, 393, 589, 629–630
long cracks, 302–303
maximum CTOD, 469
minimum, following overload, 533
3-Ni steel, 242
predictions, 430
progressive reduction, 309–310
regimes, 23
retardation, overloads, 596
small cracks, 302–303, 625–633
stress intensity factor, 24
decreasing procedure, 144, 146
stress ratio and, 40–41
stress state effects, 591
surface cracks, 590
surface flaw
large and small specimens, 626, 628–629
large cracks, 625–627
small cracks, 625–627
titanium-aluminum alloys, 156–157
variation
aluminum alloy 2124, 308–310
with stress intensity range or crack length, 301–302
Crack initiation, near specimen center, 534
Crack length
average, 199–200
as function of large cracks, 622–624
load, as function of large cracks, 622–623
versus compliance, 275–276
compliance measurements, 154
crack opening as function of, 348–349
versus cycles, decreasing load threshold testing, 554–555
effective stress range ratio as function of, 293
versus elapsed cycles response, 200
fully closed, 560–561
fully open, extent of closure as function of, 561, 563
as function of applied load, 202–203, 206–207
as function of normalized closure, 305, 309
versus near tip closure, 192–193
opening and closing loads as function of, 369–370
opening and closing points as function of, 484–486
versus opening load ratio, 275–277
opening stress intensity effect, 175, 177–178
stress intensity factor as function of, 552
threshold values, 306
Crack mouth opening displacement, see CMOD
Crack opening
versus applied load, 46–47
behavior during block history, 291–292
constant amplitude cycle, 283
crack growth, 354, 357
displacements, 48–51
Elber’s definition, 588
as function of crack length, 348–349
ideal two-dimensional, 11
load magnitude, 47–48
model, 437
modelled in CORPUS, 449
plane strain, 330–337
plane stress, 357–358
plasticity induced crack closure, 462
point
opening, as function of crack length, 484, 486
selection, 492–493
profile, 203–204, 599
stationary crack, 324–325
stress intensity, 112
surface and interior distinction, 587
tearing crack response, 327
variable amplitude loading, 448–452
wake effects, 446
Crack opening load, 44, 208–209, 230, 437, 640
constant amplitude loading, 447–448
crack growth, 445
crack length and, 207
versus crack opening displacement behavior, 233–234
determination, 508–509
Dunnett’s critical D statistic, 245
as function of crack length, 369–370
growth rates, 241
from load displacement data, 214–221
experimental methods, 219
materials, 218
normalized, versus interval size, 234–235
overload level effect, 447
prediction, 443–444
ratio, 322
versus crack length, 275–277
statistical approach, 274–275
stabilized, 445
statistical determination, 233–234, 242–246
stress ratio, 508, 510–511
strip yield model, 441
underload level effect, 447
variation during flight block, 454–455
see also Titanium-aluminum alloys
Crack opening stress, 398, 404
as function of applied stress, 354
as function of stress level, 284, 295–296
intensity
as function of test frequency, 115, 118
polycrystalline specimens, 115, 119
single crystal specimens, 115, 117
interior and exterior planes, 408–409
levels, 7, 345, 641
during ΔK-decreasing tests, 15
measurement methods, 16
stationary VA test, 27
from striation measurements, 19
normalized, 404–405
prediction of changes, 431
stress ratio effects, 421–423
variation with element width, 417
Crack path
morphology, 101, 305, 309
profile, 99, 104
Crack profile, center-cracked panel, 332, 335
Crack propagation, 35, 62, 149, 214, 279, 319, 414, 437, 505, 568, 617
analysis, 139–140
behavior, 250
binary Fe-Si alloys, 114, 116
constant amplitude load, 384
during variable amplitude histories, 297
forced, 385–386
Forman’s equation, 523–525
HiLo tests, 392–396
Crack propagation—Continued
long cracks, 304, 307–308
simulation, 384
surface, crack closure model application, 594–595
tensile range of stress intensity factor, 522, 524
test method, 518
total stress intensity factor range, 522–523

Crack propagation rate
acceleration after transition, 580
constant amplitude, 98–99
effective opening and closing stress intensity factors, 482–483, 485
fractographs used to measure, 577–579
as function of effective stress intensity factor, 524–526, 575
function of stress intensity range, 568–569
maximum stress intensity factor, 482, 484
measured from striation spacings, 576–577
near-threshold, see René 95
S-shaped unloading curve method, 482–486
stress ratio effect, 517

Crack shape factor, 595

Crack size, 62, 89
near-threshold growth, 84–86
small- and large-crack data convergence, 163
see also Large cracks; Small cracks

Crack surface
contact profiles, 404
displacements, 456–457
exterior plane, 407, 409
interior plane, 406, 409–411
elastic-plastic elements, 461
intersection points, 265

Crack tip, 607
α/β-processed Ti–6242S, 174–175
asperities
between initial notch tip, 467–468, 470
near, 468–471
closure stress, 516
cyclic deformation, 256
displacements behind, 366–367, 369
distribution of reactions near, 385–387
effective stress intensity factor, 465
finite-element mesh, 322–323, 365, 383
load versus COD, 375–377
opening load as function of distance from free surface, 204–205
partially closed, 26
plastic zones, maximum and minimum load, 350, 352
shielding, 361–362
strain, 44
behind, 368
opening displacement and, 52, 54
at point of Mode I opening load, 59
stress fields, 349, 352
stress state, 321, 483, 485

Crack-tip opening displacement, see CTOD

Crack velocity, frequency role, 119

Crack wake, 59
closing, stress intensity factor as function of, 572–573
length and state of stress, 568–582
baseline propagation data, 571–572
experimental procedure, 569–572
low-high loading, 576–581
surface removal, 573–574
test matrix, 571
reduction by saw cutting, 570
removal, 571–573
residual stresses, 349, 352
Cryogenic temperature, 62
CTOD, 171, 279, 285
 applied stress intensities, 179–181
 Dugdale model approximation, 288
 experimental and theoretical values, 290–291
 load-crack mouth opening displacement curve, 181–182
 maximum and minimum, 336
 at maximum and minimum load, 355–356, 358
 oxide thickness and, 63–64
 plasticity induced closure, 467
 threshold tests, 565
CTOD gage, 219
 Elber, 262, 530, 640
 location, 215–216
Cyclic deformation, crack tip, 256
Cyclic loading, 398, 437
 effective load range, 441
Cyclic stress-strain curve, 56

D
Damage tolerance, 491
Decreasing load threshold test
 crack length versus cycles, 554–555
 growth as function of stress intensity factor, 557
Deformation
 measurement locations, 188
 reversed plastic behavior, 348
Delay behavior, high stress ratios, 532–533
Dimensional analysis, plane strain, 320–322
Direct observation, crack closure, 16–17
Displacement profiles, behind crack tip, 369
Dugdale-Barenblatt crack model, 132
 modified, 439
Dugdale-Budiansky model, 476
Dugdale model
 extension 288, 288
 analytic method, 462–466
 plastic zone size, 439
Dugdale strip-yield model, 344
Dunnett’s critical D statistic, 245
Dunnett’s statistical procedure, 233

E
Elastic analysis, finite-element analysis, 400–401
Elastic compliance technique, 133
Elastic crack surface displacements, 209–211
Elastic-plastic analysis
 finite-element analysis, 314, 344, 358–359, 401–402, 414, 641
 finite-element model, 361–362
 two dimensional, 344–345
 procedure, 435
Elastic-plastic deformation, 398, 401
Elastic-plastic elements, crack surface, 461
Elastic-plastic fracture, 319
 mechanics parameters, 343
Elastic-plastic stress, distribution, monotonic loading, 418–419
Elastic-plastic stress-strain, 392
Elastic singularity, 389
Elastic stress
 analysis, 432–435
 distribution, monotonic loading, 418–419
Elber CTOD gage, 262, 530, 640
Elber’s closure model, 140
Elber’s concept of closure, 132
Elber’s equation, 131
Electrical potential drop method, 18
Electro-discharge machined notch, 281, 620–621
Electrohydraulic fatigue machine, 217, 219
Electro-servo-hydraulic testing machines, 306
Elliptical cracks, 583
Extended body force method, 477

F

Far-field compliance methods, 638
Far-field crack closure, 193–195
 measurements, 87
 versus near-tip crack closure, 104–108
FAST-2, 56, 58, 132
 comparison with measurements, 58
Fatigue damage, interaction effects, 6
Fe-binary alloys, 112
Finite-element analysis, 300, 319, 342, 398–413
 aluminum alloy 2124, 305, 309
 constant-amplitude loading, 403–409
 single-spike overload, 409–411
 crack growth and closure analysis, 402
 crack opening load, 335
 elastic analysis, 400–401
 elastic-plastic, 314, 344, 358–359, 401–402, 414, 641
 equilibrium equations, 401–402
 idealization of specimen, 401–402
 incorporating eight-noded hexahedron element, 399–400
 middle-crack tension specimen, 400
 plane strain, 322–324
 specimen modeling, 402–403
 two-dimensional, 399, 417
Finite-element discretization, 303, 308
Finite-element model, 361–362
 plasticity-induced closure, 375
 two dimensional, 344–345
Finite-thickness plates, crack-closure behavior, 399
Fleck's method, 60–61
Flexibility method, 432–435
Flight simulation loading, 491, 642
Flow stress, 285, 287
Forman's equation, correlation based on, 523–525
Four-point bend specimen, 198
Fractography
 checking prediction techniques, 28–29
 variable amplitude loading, 100–101, 105
Fracture mechanics, 149, 361–362, 414, 548, 598
 application, 139
 see also Linear elastic fracture mechanics
Fracture mode, in vacuum, 563
Fracture surface, 66, 68
 asperity contacts, 179, 181, 542–543
 β-annealed, 99, 102
 contact during crack closure, 14
 crack in sheet material, 12
 mismatch, 39, 536
 overload crack front, 533
 oxide on, 565
 partial contact, 536
 polycrystalline specimens, 115
 sheet material, 12
 single-crystal, 114–115, 117
Frequency effects, 112

G

Gage length, 463
Gaseous environment, 88–89
 near-threshold crack growth behavior, 78–80
Gauss-Siedel iterative technique, 363–364
Geometric asperities, 112, 116
Governing equations, plastic flow, 439–440
Grain boundary closure, 36, 41–42
Grain size, 36, 41–42
binary Fe-Si alloys, 115
near-threshold crack growth rates
effects, 70–71
Growing fatigue crack
active plastic zones, 337–339
comparison with stationary and
tearing cracks, 333–334,
336–337
plastic zone distribution, 337–339

Hertzberg's hypothesis, 575–577
HEXNAS, 399
High strain fatigue, 279–299
block history and corresponding
hysteresis loop, 282
closure behavior during variable
amplitude cycling, 291–296
comparison of loading histories,
296–297
correlation of constant amplitude
crack growth, 285–291
crack-opening, stresses as func­
tion of stress level, 284
crack propagation, 297
electro-discharge machined
notch, 281
experimental program, 280–284
opening and closing levels,
284–285
specimen geometry, 281
HiLo crack propagation tests,
392–396
numerical simulation, 395–396
History of knowledge development,
5–7

I
IMI 550
β-annealed microstructure, 95–96
constant amplitude crack propa­
gation rates, 98–99
mechanical properties, 95
IN9021-T4, experimental and pre­
dicted growth rates, 36–37
Inconel 706
crack closure, 80, 82
temperature and R ratio effects,
79–81
Incremental polynomial smoothing
routine, modified, 612
Interface transmissivity, 539, 541
Interferometric displacement gage,
186, 195, 621
principle of operation, 153
procedure, 187
schematic, 188
Interferometric strain/displacement
gage, 271–272, 640
Irwin plane stress plastic zone size,
367
J integral, 279, 285
correlation of constant amplitude
crack growth, 286, 288

K
Kinematic hardening model, 348

L
Landing gear loading, 452–455
Laplace operator, 313
Large cracks
closure
as function of crack length,
622–624
load as function of crack length,
622–623
versus maximum stress inten­
sity factor, 624
crack growth rate, 156–159
as function of effective stress inten­sity factor, 85–86,
631–632
surface flaw, 625–627
load-CMOD plot, 621–622
specimen geometry, 620
testing procedure, 621
Life prediction, 304, 414, 437, 491
Linear elastic fracture mechanics,
279, 302, 548–549, 617
Linear elastic fracture mechanics—Continued
elastic stress fields, compared with crack closure ligament model, 419
stress intensity factor, 371
Load-cancelled displacement traces, 142-143
Load-crack opening curves, residual stress determination, 55-56
Load displacement, 172, 214
Load history, 186-187, 639
block, 282, 291-292
high strain fatigue, 296-297
load-shedding tests, 506-507
techniques, 187-189
in terms of maximum stress intensity factor, 189
test matrix, 189-190
Loading, 62, 89, 121-138
comparison with literature results, 128-132
crack closure dependence, 124-126
crack propagation, 141
effects of artificial levels of closure, 142
experimental techniques, 122-124
flight simulation, 491, 642
local and remote closure measurements, 125-128
low-high, 576-581
monotonic, elastic and elastic-plastic stress distributions, 418-419
rates, 140-141
based on closure levels, 142-144
decreasing crack closure levels, 145
stress intensity factor, increasing and decreasing procedures, 144-145
see also specific types of loading
Load interactions, 568

Load ratio, 62
Load shedding, 30
2024-T3 aluminum alloy, 507-508
stress intensity factor, 552-553
Load spectrum, shapes, 27-28
6% load-step tests, 2024-T3 aluminum alloy, 509-513
constant-maximum stress intensity factor tests, 512-513
growth rate against stress intensity factor, 509-511
opening load, 510-511
threshold and effective threshold stress intensity factor, 511-512
18 and 30% load-step tests, 2024-T3 aluminum alloy, 513-514
Long cracks
crack propagation, 304, 307-308
growth rate, 302-303
Low-cycle fatigue, 279, 548

M
Macrocrack, 29-30
crack closure, 10-11
difference from microcracks, 9
growth, 30
structurally sensitive growth, 14-16
experimental procedure, 173-175, 198-199
interferometry measurements, 202-205
load-displacement data, 175-176
numerical analysis, 175, 209-210
significance, 140
standardizing, 222-229
see also CMOD; CTOD
Mechanical parameters, 583
Mechanisms, 5, 63–64, 87, 121, 172, 301, 304–305, 461, 583, 586, 637–639
constant amplitude cycling, 98–102
crack closure, 8–16
experimental procedures, 95–99
far-field versus near-tip closure, 104–108
materials and experimental procedures, 113–114
microstructural effects, 108
model, 115
residual stress and closure concepts, 95
retardation following tensile overload, 94
transient growth rate response, 109
variable amplitude loading, 98–103
Mesh System I, II, and III, 382
Metals, 171
Microcracks, 29, 149, 617
crack closure, 9–10
difference from macrocracks, 9
Microscopical observations, 6
Microstructure, 5, 62, 65, 88
α/β-processed, 173
dual phase steel, 73
effects following tensile overload, 107–108
threshold values, 311
Middle-crack tension specimen, 400
finite-element idealization, 401–402
modeling, 402–403
Minicomputers, 149
Mode conversion, 536
Models, 44, 56–57, 293, 477
asperities, 461
closure mechanisms, 115
crack closure, 44, 56–57, 477
crack growth, 437, 441–443
crack opening, 437
Dugdale-Barenblatt, 132
Newman's, 132
see also specific models
Monotonic loading, elastic and elastic-plastic stress distributions, 418–419
Near-tip closure, 262
versus crack length, 192–193
versus far-field crack closure, 104–108
local, 265
plane stress, 265
Near-tip crack, profile evolution, 385–386
Newman's crack closure model, 132–134
comparison with experimental results, 133–134
Newman's model, 285
Newman's prediction, 275–277
Newman's simulation model, 59
Newton interferometer, 600–601
Nickel base superalloy, see René 95
3-Ni steel, chemical composition, 231
crack growth rate, 242
mechanical properties, 232
No-growth threshold force, 393, 396
Nondestructive evaluation, 536
Nonpropagating crack, 365, 475
hysteresis curves, 484–486
Notch
plastic zones, 350–351, 353
stress fields, 350–351, 353
Notch tip, effect of asperities near initial, 468–470
Numerical analysis, 175, 209–210
aluminum alloy 2124, 306, 308
Numerical simulation
crack growth threshold, 381–383
Numerical simulation—Continued
Hi-Lo crack propagation tests, 395–396

O
Offset axis method, 206
O-order fringe, 199
Opening force
mesh independent determination, 390–392
numerical definition, 384
variation versus mesh length, 387–388
Optical interferometry, 270
fringe patterns, 201–202
O-order, 199
PMMA, 602
PMMA, 202–205, 643
polymers, 197
procedure, 198–199
surface under near zero load, 604–605
Overload
aluminum alloys, 592–595
closing level, 296–297
effects, 583
growth delays, 642
high stress ratio, 528
retardation, 20–21, 596
plasticity-induced closure effects, 37–38
prediction, 593, 595
residual stress, 106
stress range ratio variation, 592–593
strip yield model effects, 446–448
tunneling following, 534
Oxidation, 548
Oxide
buildup, 562
thickness and crack-tip opening displacement, 63–64
formation, calculation of volume change of base metal during, 566
Oxide-induced closure, 63, 66–69, 77, 112, 549, 562, 638
Oxide thickness
determination, 551–552
temperature effects, 76

P
Paris crack growth regime, 23
Paris law, 139–140, 516, 612
modified, 418
Paris’ relation, 472
Paris type equation, 577
Partially closed crack, 216
Phase transformation, 62
Plane strain, 11–12, 290, 319–342, 568
crack growth simulation, 328, 330
crack opening behavior, 330–337
dimensional analysis, 320–322
finite element analysis, 322–324
opening levels, 297
plasticity-induced crack closure, 340
plastic zone distribution, 337–339
stationary crack, 324–327
strain hardening, 354, 356
tearing crack, 327–329
transition to plane stress, 24
Plane stress, 11–12, 290, 342, 568
analysis, 363
closure, 36
crack growth analysis, steady state, 132
crack opening, 357–358
opening levels, 297
plastic zone, 30
plastic zone sizes, 572–573
region Po, 587
transition from plane strain, 24
Plastic deformation, 380, 437–438
Dugdale hypothesis, 477
Plastic flow, governing equations, 439–440
Plasticity, 62
Plasticity-induced closure, 44–61, 262, 314, 319, 335, 343, 348, 549, 562, 637–639
analysis, 464
approach, 362–366
closing and maximum stress intensity factor, 624
compressive loading, 82–84
crack opening, 462
displacements, 48–51
crack size, 84–86
crack-tip strain, opening displacement and, 52, 54
displacements behind crack tip, 366–367
dual phase steel, 70–74
experimental procedure, 45
finite-element mesh, 364–365
finite-element modeling, 375
future research, 86–88
gaseous environment, 78–80
loading condition, 79–84
load versus CMOD, 374–377
models, 87–88
opening and closing stress intensity factor, 371–373
opening load magnitude, 47–48
plane strain, 340
plastic wake formation, 369
relative strength, 466–468
residual displacements, 52–53, 55
retardation effect of overload, 37–38
significance, 36
strains, 51–52
stress ratio effects, 36, 79–82
surface displacements, 573
temperature effects, 74–77
transition from roughness induced closure, 574–576, 643
Plasticity induced crack opening, 438
Plasticity model, 346
Plastic singularity, 389
Plastic strain singularity, 392
Plastic strain tensor, variation, 390–393
Plastic tip zone, plane stress, 30
Plastic wake, 319–320, 342, 366, 643
decays, 320
fields, 24
formation, 369, 399
Plastic zone, 437
active, 338–340
distribution
growing fatigue crack, 337–339
at stationary fatigue crack tip, 324, 326
Dugdale solution, 444
maximum and reversed, 350, 352
morphology, 312
reversed, 324, 326
secondary, 328, 337, 339
shapes
numerical predictions, 313–314
plane strain, elastic-plastic, finite-element predictions, 312, 314
Plastic zone size, 11–12, 290, 300
center-cracked panel, 324, 326
correction, 372
cyclic, 291
Dugdale, 439
Irwin plane stress, 367
near-tip plane stress, 265
plane stress, 572–573
relationship, 39
secondary and primary ratio, 444
small-scale yielding, 320
tearing crack, 327, 329
T-stress, 321
PMMA, 197, 639
backface strain, 206–207
CMOD measurements, 206–207
crack length versus elapsed cycles response, 200
crack opening profile, 203–204
cyclic loads, 198
elastic modulus, 199
interference fringe patterns, 201–202
PMMA—Continued
load-displacement record, 205–206
mid-plane crack surface displacements, 210, 212
optical interferometry, 202–205, 643
surface flaws, 598–616
absolute values of closure load measurements, 610–611
closure/opening load definitions, 605–607
COD measurements, 601–602
COD profile, 602–605
crack growth, characteristics, 614–615
effective stress intensity factor, 611
experimental approach, 599–602
modified incremental polynomial smoothing routine, 612
stress intensity factor, 607–610
surface crack, 600–601
Type II crack, 603
threshold stress intensity factor, 601
yield strength, 199
Polycarbonate, crack unzipping behavior, 216
Polycrystalline specimens, 115, 119
Polymer, 197
Precracking, 621
Pressure vessel steel, temperature effects on crack growth rates, 74
Propagating crack, 365
Pure bending, 260–269
experimental procedure, 261–262

R
Rain-flow effect, 493–495
Rain-flow method, 642
Raju-Newman K equations, 643
René 95, 548–567
chemical composition, 550
closure measurements, 189
experimental approach, 550–552
mechanical properties, 550
oxide formation, 566
Residual displacements, 52–53, 55
Residual strain, 106
Residual stress, 44
across interface, 542–543
along crack flank, 55–57
computation, 59
determination from load-crack opening curves, 55–56
field
asperity contact, 537–538
redistribution, 419–421
Fleck’s method, 60–61
following overload, 106
Glinka’s crack growth data, 423–425
Liu’s crack growth data, 425–429
Residual stretch, distribution, 462, 465–466
Resistance, fatigue crack growth, 5
Retirement for Cause methodology, 548
Reverse slip, 112
Roughness-induced closure, 35, 39–40, 62–64, 549, 562
crack wake effects, 569
dual phase steel, 72, 74
stress ratio effects, 79–81
transition to plasticity induced closure, 574–576, 643

S
Secant modulus, 288
Sehitoglu’s model, 293
Semi-infinite crack, small scale yielding, 319
Servohydraulic testing machine, 252–253
Shear lips, 12–14
environmental effects, 13
Short cracks, 149, 270–278, 300, 617, 641
closure, specimen geometry, 192
crack compliances, 274–275
COD, measurement procedures, 272–274
growth rate, 361
load-COD plots, 274
load-displacement plot, 273
opening load ratios, 274–275
plasticity induced closure, 361
through-thickness, 314
Single crystal, 112
 average and maximum step height versus frequency, 115, 118
 crack opening stress intensity, 115, 117
 fracture surface, 114–115, 117
 geometric asperities, 116
Single-spike overload, constant-amplitude loading, 409–411
Slope deviation technique, 175
Small-crack effect, 149, 165, 362, 617
Small-crack specimen, 152
Small cracks, 6, 62, 149, 270, 617–635, 644
crack-closure levels, 621–624
 crack driving force, 303
 differences between types, 10
 growth behavior and crack closure, 84–85
 growth rate, 149, 156–159, 302–303, 625–633
 as function of effective stress intensity factor, 85–86, 631–632
 material condition effects, 164
 surface flaw, 626–627
 high strain, see High strain fatigue
 length, dependence of closure, stress intensity factor
 157–158, 160
material, 618–619
test conditions, 620
testing, 151, 154–155
Small-scale yielding, 279, 285, 342–360, 439
 analysis, 344–346
 background, 343
constitutive model, 343–344
crack growth, 319–320
current needs, 343–344
current work, 344
 notch plastic zones, 350–351, 353
 semi-infinite crack, 319
 stress history, 346–348
 stress-strain response, 346
Specimen geometry, 186–187
Spring stiffness, 322, 402, 415
S-shaped unloading curve method, 475–488
 crack propagation rate, 482–486
 curve obtained from experiments, 483–484
 effective stress range, 485–487
 material, specimen and experimental procedures, 481–483
 stress and strain relationship, 481, 483–484
 stress state near crack tip, 483, 485
Stainless steels, 121
 chemical composition, 122
 compressive loading effects, 82–83
 effective stress intensity range ratio, 124–125
 mechanical properties, 123
Static stress, average, 543
Stationary crack
 active plastic zone, 340
 comparison with growing fatigue
 cracks, 333–334, 336–337
 crack opening profile, 324–325
 plane strain, 324–327
 plastic zone distribution at tip, 324, 326
Statistical approach, 230–246
 Cochran’s test for equality of variance, 244
 expanded control interval
 combined cycles, 237–238
 separate cycles, 236–237
 experimental procedure, 232–233
 materials, 232
 opening loads, 233–234
Statistical approach, opening loads—Continued

- crack growth rates and, 241
- uniform intervals, separate cycles, 234–236
- validation, 238–241

Steel
- chemical composition, 280, 517
- crack closure, 78, 80
 - environmental effects, 78
- crack growth
 - rates, 144, 146
 - surface, 267–268
dual phase, 62, 88
- crack growth rates, 71–72
- microstructural features, 73
- near-threshold crack growth rate effects, 70–74
- threshold stress intensity, 73
- fatigue loading variables rates, 142, 144
- grain size, 70
- low carbon, small crack growth behavior, 84–85
- mechanical properties, 280, 518

Stereoimaging, 45, 123, 133
Stiffness matrix, 364
Stiffness truss elements, 345

Strain
- behind crack tip, 368
- parallel to loading axis, 51–52, 54
- perpendicular to loading direction, 51, 53
- plasticity-induced closure, 51–52
- range as function of closed crack length, 51–52

Strain gage
- compliance measurements, 17, 20
- position, 518
- techniques, 516

Strain hardening, 342, 354–355
- plane strain, 354, 356

Stress
- amplitude versus notch depth, 40
- analysis, 437
- crack opening, 131
- fields, crack tip, 349, 352
- history, small-scale yielding, 346–348
- level, 342
 - crack opening, 345
- mean, 414
- nonsingular, 312–313
- normal distribution, HiLo test, 394, 396
- out of plane, 343
- residual, 414

Stress concentration factor, 324
Stress function, 313
Stress intensity factor, 6, 536
-applied, 150
 - versus effective, 227–228
-closing
 - as function of crack length/width, 555–559
 - as function of crack wake, 571–572
 - as function of distance from transition, 580
 - as function of small crack length, 157–158, 160
 - as function of specimen thickness, 573
 - increase after reinitiation of growth, 574
 - increase after transition, 575–577
 - versus maximum, large cracks, 624
 - versus measurement location, 190–191
-measured values, 577
-plasticity induced closure, 371–373, 575
-roughness induced, 575
-short cracks, 192
COD_{sub} relation, 471
correlation with effective, 255
crack growth life, 427
-crack in infinite plate, 456–457
-crack opening, 39, 247
determination, 251–254
versus maximum statistical approach, 263–264
plane strain, 265
crack shape factor, 595
effective, 58, 465, 469, 475, 517, 545, 599
after mean load change, 258
closure loads, 629–632
constant amplitude loading, 453–454
crack tip, 607–609
as function of reciprocal stress intensity factor, 48
as function of stress ratio, 140
minimum and maximum, 424
PMMA flaws, surface flaws, 611–614
utility, 160–163
VA load history, 26
variation along crack front, 26
effective closing, crack propagation rate, 483, 485
effective opening, crack propagation rate, 482, 485
effective threshold, 505
variation with stress ratio, 510–514
equations, 515, 643
as function of crack length, load shedding rates, 552
as function of stress ratio, 22–23
global, 545
linear elastic fracture mechanics, 371
loading conditions, 271–272
load shedding, 551, 553
local, acoustic waves, 543–546
maximum, 131
crack propagation rate, 482, 484
relation with stress intensity range ratio, 127, 475–476
unloading from, 325
measured and predicted, 51
modified form, 140
nomenclature, 248
opening, 459
collection of CMOD and backface strain, 179
crack length effect, 175, 177–178
dependence on numerical procedure, 178, 183
plasticity induced closure, 371–373variation with maximum, 378
Paris law, 418
plastic wake, 643
plate of finite width, 519
PMMA flaws, surface flaws, 607–610
residual stress, 55
specimens, 271
surface-layer removal, 643
Stress intensity range ratio
effective, 11, 124–127, 129, 421
as function of crack length, 293
Glinka’s crack growth data, 423–425
and maximum stress intensity factor, 475–476
relation with maximum stress intensity factor, 485–487
versus stress ratio, 421–424
influence of extent of closed crack, 128–129
literature results, 128–132
relation to stress ratio, 520–522
variation from overloads, 592–593
Stress ratio, 15, 260, 342, 505, 516, 583
aluminum alloys effect, 588–590
compliance before and after overload, 531
constant amplitude growth, 297
crack initiation near center, 534
crack opening stress effects, 421–423
crack tunneling, 534
delay behavior, 532–533
effective, 424
experimental methods, 529–530
high, 528–535
load versus CTOD, 530–531
materials, 529
near-threshold crack propagation rates, 79–82
plasticity-induced closure effects, 36
propagation rate effect, 517
relation to stress range ratio, 520–522
roughness-induced closure, 39
SEM examination, 533–534
stress intensity factors as function of, 22–23, 66–67
threshold behavior, 254–255
Stress spectra, 491
Stress state
effects, 583
aluminum alloys, 590–592
crack growth rates, 591
near crack tip, 483, 485
see also Crack wake, length and state of stress
Stress-strain relations, loading and unloading, 479
Stress tensor, 319–320
Striation counting technique, 577
Striations, fracture surfaces, 18–19
Strip yield model, 437–458, 641
basic equations, 456
comparison with CORPUS, 450–452
constant amplitude loading, 444–445
crack growth law, 441
crack opening load, 445
crack surface, displacements, 456–457
discretization of problem, 442–444
elastic problems, 438–439
landing gear loading, 452–455
mathematical model, 438–442
 crack growth model, 441–443
 crack opening load, 441
 plastic flow governing equations, 439–444
 opening load, 453
 single overloads and underloads, 446–448
 stress intensity factors, 456
 variable amplitude loading, 448–452
 Structural steel, 516
 Surface crack
crack growth rate, 590
 fully closed, 643–644
 plasticity-induced closure, 262
 specimen, 600
 under pure bending, see Pure bending
 void formation, 601
 see also Small cracks
 Surface-flaw
crack growth rate, large crack, 625
 see also Crack growth rate, surface flaw; PMMA, surface flaws
 Surface-layer removal, 643
 Surface roughness
 environment and, 13
temperature effects, 76
T
Tearing crack, 321
comparison with growing fatigue cracks, 333–334, 336–337
plane strain, 327–329
Technical significance, crack closure, 7–8
Temperature, 88
 elevated, 548
 threshold tests, 553, 562
 near-threshold crack propagation rates, 74–77
Tensile overload, 93
 crack growth effects, 96–97, 102, 105–106
 parameters associated with, 97
 post-overload retardation variation, 107–108
 retardation following, 94
Tension plastic zone, 256
Thickness effects, 25, 36
Three-dimensional analysis, 398
Threshold behavior, 247–259
 in air and in vacuum, 250
 crack opening, statistical approach, behavior, 251
 general form, 248–249
 method to check, 251
Threshold test, 193, 551, 643
 closing stress intensity factor as function of crack length/width, 555–559
 CTOD, 565
 elevated temperature
 crack arrest, 562
 crack length versus cycles, 553
 see also Decreasing load threshold test
Through-thickness cracks, 277
Titanium alloys, 93, 171, 247
 Bodner coefficients, 363
 chemical composition, 619
 crack opening stress, 131
 crack tip area, 174–175
 mechanical properties, 174
 microstructures, 173
 small cracks, see Small cracks
 see also IMI 550
Titanium-aluminum alloys, 149–167
 α-phase, 150
 asperity-induced crack closure, 164
 chemical composition, 151, 252
 crack closure
 levels, 158, 160
 measurements, 157–158, 160
 crack growth rate, 156–159
 effective stress intensity factor, utility, 160–163
 experimental methods, 151–154
 heat treatment, 152
 load versus crack mouth opening displacement, 154–155
 materials, 150–151
 mechanical properties, 253
 small-crack effect, 149, 165
 small-crack testing, 151, 154–155
 tensile properties, 152
 Vickers hardness indentations, 153
Transformation closure, 35
Transient crack growth rate behavior, 93
Transitional closure, 35–36, 40–42
Transmission coefficient, aluminum alloy, 539
Triangular constant strain mesh, 209–210
Truncation level, definition, 502
T-stress, 324, 337
Tunneling, following overload, 534
TWIST, 642

U

Ultrasonic techniques, 537
 interaction with asperities, 538–542
Underload, strip yield model effects, 446–448
Unloading compliance, 459
Unloading elastic compliance method, 475–478
 analytical method, 477–478

V

Validation, statistical approach, 238–241
Variable amplitude cycling, 279
 closure behavior during, 291–296
Variable amplitude loading, 25–26, 30–31, 93
 CORPUS model, 449–450
 crack closure, 101–103
 crack opening, 448–452
 fractography, 100–101, 105
 growth rate data, 99–100
 stationary test, 27
Vickers hardness indentations,
 titanium-aluminum alloys, 153
Visco II, 363–364

W
 Westergaard stress function, 456
 Williams' stress function, 313

Y
 Yield strength, 62, 88
 binary Fe-Si alloys, 115
 near-threshold crack propagation rates, 65–70
 stress intensity factor effects, 66–67
 Yield stress
 normalized, 405–406
 spike overload effects, 408–410