Subject Index

A

Additives, 79
Aging, 7, 21
American National Standards Institute, 79
American Water Works Association, 40, 185
Arching, 266
ASTM standards
D 1784: 7, 159
D 2321: 281
D 2412-87: 7
D 2487: 245
D 3034: 159, 393
D 3839: 281

B

Bend test, 92
Buckling, 57, 141, 266
continuum theory, 344
Bulk modulus, 141

C

Certification, third party, 79
Chemical resistance
polyethylene, 21
polyvinyl chloride, 7
CIPP (cured-in-place) pipe, 329
Classification, soils, 245
Compaction, 141, 281
Compressive wall crushing, 266
Concrete pipe, reinforced, 297
Constrained modulus, 141
Continuum buckling theory, 344
Crack damage, 40
Crack growth, slow, 21
Creep testing, 159
Culverts, 281
Cured-in-place pipe, 329

D

Deflection, 171, 281, 393
analyzing, 141, 233
estimating, 185
Iowa formula, 266
monitoring, 125, 217
Deformation, 171
Design, 40, 57, 217
buckling theory, 344
liner, 297, 313
ocean outfall, 336
sewer, 363
strain, 159
Drinking water, 79
Durability, 7, 21

E

Elastic continuum analysis, 344
Elasticity, modulus of, 233, 393

F

Fatigue behavior, 101
Fiberglass pipe, 40, 281, 297, 363
Fiberglass reinforced plastic pipe, 185, 217
environmental effects, 217
Fittings, pipe, 101
Flexible pipe, 7, 57, 336, 379
deflection, 125, 141, 171, 185, 281

G

Gas distribution, pipes for, 233
Glass fiber reinforced plastic pipe, 185, 217
Gravity flow pipes, 57, 159, 313

H

Health effects, 79
Hydrogen sulfide, 297

I

Installation
D 2321: 281
D 3839: 281
liners, 297, 313, 329
practices, 217
Invert elevation measurements, 125
Iowa formula, 266
modified, 185
J
Joint tightness, 393
K
Landfills, 379
Linear shell stability theory, 344
Liners, pipe, 297, 313, 329
Loading characteristics, 40, 57, 101, 171, 217, 233, 266
D 2412: 7
deflection test, 125
pipe in landfills, 379
sewer force main projects, 363
M
Moisture content, 245
N
National Sanitation Foundation, 79
Ocean outfall, 336
Oxidative degradation, 21
P
Photodegradation, 21
Pipe-to-soil friction, 245
Pitch-catch emulation, 92
Plastic pipe, for drinking water, 79
Poisson’s ratio, 141
Polyethylene pipe, 21, 336
aging, 21
heat fused joints, 92, 101
high density, 313
Polypropylene pipe, 336
Polyvinyl chloride pipe, 7, 101, 125, 159, 233
D 1784: 7, 159
D 3034: 159, 393
environmental effects, 7
pipe-to-soil friction, 245
storm drains, 171
Pressure distribution, shear resistance effect on, 266
Pulse echo, 92
R
Rehabilitation, 329
polyethylene pipe, 313
sewer pipe, 297
Resin impregnated flexible tube, 329
Rolldown, 313
S
Sewer pipe, 7
D 3034: 159, 393
force mains, 363
rehabilitation projects, 297, 313, 329
Shape factors, 40
Shear resistance, 266
Shear strength, pipe-to-soil, 245
Sliplining, 297
Slope stability, shear resistance effect on, 266
Soil mechanics, 125, 141, 185, 217, 379
classifications, 393
D 2487: 245
density, 281
models for, 344
Soil-structure interaction, 125
Soil types, 233, 393
D 2487: 245
Spangler approach, 185
Stability, 344, 379
Standards (See also ASTM standards), 40
ANSI/NSF Standard 61, 79
ATV A 127, 57
AWWA C950, 185
installation, 281
Static calculation, 57
Stiffness, 7, 40, 171, 217, 266, 393
Strain, 159, 171, 233
constant, 7
Strength, long-term, 21, 40, 141
Stress, fatigue, 101, 233
Stress relaxation, 7, 159
Stress rupture, 21
Stress-strain behavior, 141
Structural stability, 379
Submarine outfall systems, 336
Surge fatigue stressing, 101
Swage reduction, 313

T
Tensile strength, 393
Tensile test, high speed, 92
Thermoplastic (See also specific types), 171, 281, 336
Thrust
 restrained systems, 245, 363
 wall, 141
Toxicology, 79

U
Ultrasonic inspection, 92

V
Visco-elastic reduction, 313

W
Wall pipe, structural profiled, 171
Wall thrust, 141

Y
Young's modulus, 141