HYDRAULIC SYSTEM CLEANLINESS

A symposium presented at the Seventy-third Annual Meeting AMERICAN SOCIETY FOR TESTING AND MATERIALS Toronto, Ont., Canada, 21-26 June 1970

ASTM SPECIAL TECHNICAL PUBLICATION 491

List price $4.50
04-491000-12

AMERICAN SOCIETY FOR TESTING AND MATERIALS
1916 Race Street, Philadelphia, Pa. 19103
NOTE
The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

The Symposium on Hydraulic System Cleanliness was given at the Seventy-third Annual Meeting of the American Society for Testing and Materials held in Toronto, Ont., Canada, 21-26 June 1970. The symposium was sponsored by Committee D-2 on Petroleum Products and Lubricants. J. J. Weaver, Shell Oil Company, presided as symposium chairman.
Related
ASTM Publications

Significance of ASTM Tests for Petroleum Products,
STP 7-B (1957), $3.50
Contents

Introduction 1

Hydraulic Oil Cleanliness: A Key to N/C Machine Maintenance—O. H. ARNDT 3

Maintenance of Cleanliness of Hydraulic Fluids and Systems—L. B. BARANOWSKI 18

Fluid Conditioning for Servo Systems—J. N. CORONEOS 29

Improve System Contamination Control and Increase System Efficiency—J. P. DUNCAN 34

Requirements for an Effective Program in Fluid Contamination Control—E. C. FITCH, JR. 39

Contribution of Hydraulic Fluids to System Contamination—E. A. KIRNBAUER 50

Status Report on the Tech O/F-7 Contamination Methods Program—D. A. MARLOW AND A. BEERBOWER 69

Filtering—From the Moon to the Mines—W. J. MARSH 78
Introduction

Experience in the hydraulic industry indicates that there is a need for test methods to deal with problems caused by dirt in hydraulic systems. Representatives of industry have asked Technical Division N to consider the possibility of developing applicable test methods. To achieve a better understanding and definition of the problems, we have organized our symposium to discuss the various aspects of industrial hydraulic system cleanliness. We planned the symposium to include contributions from a wide range of interested parties. Our authors represent users of hydraulic systems, equipment manufacturers, filter manufacturers, technical societies, and educational institutions.

We believe that the authors have done an excellent job for us. Their papers show the benefits and problems associated with hydraulic system cleanliness and demonstrate the need for test methods to evaluate filters and measure contamination. It is hoped that Technical Division N will undertake the development of these test methods. Our symposium and the following list of D-2 Committee, ASTM Standards are suggested as guides for such an undertaking.

ASTM Standards Relating to System Cleanliness

Sampling

D 2388 Field Sampling of Aerospace Fluids in Containers
D 2407 Sampling Airborne Particulate Contamination in Clean Rooms for Handling Aerospace Fluids
D 2429 Sampling Aerospace Fluids from Components
D 2437 Open-Bottle Tap Sampling of Noncryogenic Fluid Systems
D 2535 Sampling for Particulates from Aerospace Components with Convolutes
D 2536 Sampling Particulates from Reservoir Type Pressure-Sensing Instruments by Fluid Flushing
D 2537 Sampling Particulates from Storage Vessels for Aerospace Fluids by Vacuum Entrainment Techniques (General Method)
D 2542 Liquid Sampling of Noncryogenic Aerospace Propellants

Sample Processing

D 2391 Processing Aerospace Liquid Samples for Particulate Contamination Analysis Using Membrane Filters
Tests for Contamination

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 893</td>
<td>Test for Insolubles in Used Lubricating Oils</td>
</tr>
<tr>
<td>D 1404</td>
<td>Estimation of Deleterious Particles in Lubricating Grease</td>
</tr>
<tr>
<td>D 2273</td>
<td>Test for Trace Sediment in Lubricating Oils</td>
</tr>
<tr>
<td>D 2276</td>
<td>Test for Particulate Contaminant in Aviation Turbine Fuels</td>
</tr>
<tr>
<td>D 2387</td>
<td>Test for Insoluble Contamination of Hydraulic Fluids by Gravimetric Analysis</td>
</tr>
<tr>
<td>D 2390</td>
<td>Microscopic Sizing and Counting Particles from Aerospace Fluids on Membrane Filters</td>
</tr>
<tr>
<td>D 2430</td>
<td>Tests for Identification of Metallic and Fibrous Contaminants in Aerospace Fluids</td>
</tr>
<tr>
<td>D 2546</td>
<td>Test for Identification of Solder and Solder Contaminants in Aerospace Fluids</td>
</tr>
</tbody>
</table>

Filters

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 2499</td>
<td>Method of Test for Pore Size Characteristics of Membrane Filters for Use with Aerospace Fluids</td>
</tr>
<tr>
<td>D 2767</td>
<td>Test for Liquid Flow Rate of Membrane Filters</td>
</tr>
</tbody>
</table>

Acknowledgment

I wish to thank K. G. Henrikson, Mobile Oil Corp.; R. C. Givens, Texaco Inc; P. K. Schacht, Rex Chainbelt Inc.; R. H. Schmitt, Mobile Research and Development Co.; and W. M. Schrey, U.S. Steel Research, for their work and guidance in organizing the symposium.

J. J. Weaver
Shell Oil Company; symposium chairman.