Symposium on
ELEVATED TEMPERATURE
STRAIN GAGES

Published by the
AMERICAN SOCIETY FOR TESTING MATERIALS

ASTM Special Technical Publication No. 230
Note.—The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

© by American Society for Testing Materials 1958
CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction—D. E. Weiss</td>
<td>1</td>
</tr>
<tr>
<td>Recent Laboratory Evaluation of High-Temperature Strain Gages to 900 F—Emmett E. Day</td>
<td>3</td>
</tr>
<tr>
<td>Progress on Metalfilm Strain Gages—William T. Bean, Jr.</td>
<td>12</td>
</tr>
<tr>
<td>Advances in Static and Dynamic High Temperature Strain Gage Research—Richard H. Kemp</td>
<td>18</td>
</tr>
<tr>
<td>Laboratory Evaluation of Nichrome-Foil Strain Gage Installations up to 1200 F—William R. Forlifer</td>
<td>42</td>
</tr>
<tr>
<td>Optical Strain Gages for Use at Elevated Temperatures—H. K. Howerton</td>
<td>51</td>
</tr>
<tr>
<td>A Facility for the Evaluation of Resistance Strain Gages at Elevated Temperatures—R. L. Bloss</td>
<td>57</td>
</tr>
<tr>
<td>Resistance Measurement of Ceramic-Type Strain Gage Cements—J. W. Pitts, E. Buzzard, and D. G. Moore</td>
<td>67</td>
</tr>
<tr>
<td>Development of High-Temperature Strain Gage Wire—W. H. Graft</td>
<td>76</td>
</tr>
<tr>
<td>Evaluation of Several Gage Configurations Fabricated with Armour Alloy “D”—Jack J. Shrager</td>
<td>87</td>
</tr>
<tr>
<td>Ceramic Coatings for Experimental Stress Analysis—F. B. Stern, Jr.</td>
<td>97</td>
</tr>
</tbody>
</table>

Panel Discussion

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonding Agents for High-Temperature Strain Gages—Dwight G. Moore</td>
<td>106</td>
</tr>
<tr>
<td>Foil Gages for High-Temperature Applications—Frank F. Hines</td>
<td>113</td>
</tr>
<tr>
<td>Temperature Compensation Techniques—Richard Friedman</td>
<td>116</td>
</tr>
<tr>
<td>Problems in Thermal Stress Measurements—D. J. DeMichele</td>
<td>121</td>
</tr>
<tr>
<td>Elevated Temperature Strain-Gage Investigations at Grumman Aircraft Engineering Corporation—Robert J. Stewart</td>
<td>127</td>
</tr>
<tr>
<td>High Temperature Strain Gage Evaluator—C. K. Martina</td>
<td>131</td>
</tr>
<tr>
<td>Bakelite Strain Gages for Temperatures between —320 and 450 F—Donald J. Madsen</td>
<td>133</td>
</tr>
<tr>
<td>Investigation of Strain Gages for Long-Time Static Testing to 650 F—Herbert Yanowitz, Irwin Berman, and Alfred Bleiweis</td>
<td>142</td>
</tr>
<tr>
<td>High-Temperature Strain Gage Testing at Rolls-Royce—D. A. Drew</td>
<td>151</td>
</tr>
</tbody>
</table>

Additional Papers

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and Application of High-Temperature Strain Gages for Stress Measurements in Jet Engines—B. R. Anderson</td>
<td>153</td>
</tr>
<tr>
<td>The Synthetic Mica Gage—G. A. Brewer</td>
<td>162</td>
</tr>
</tbody>
</table>
FOREWORD

The subject covered in this Symposium is of considerable concern to the ASTM-ASME Joint Committee on Effect of Temperature on the Properties of Metals. In view of this, the Administrative Committee on Papers and Publications is pleased to sponsor its publication.