The Fifth International ASTM/ESIS Symposium on Fatigue and Fracture (35th ASTM National Symposium on Fatigue and Fracture Mechanics) was held in Reno, Nevada on 18-20 May 2005. ASTM International Committee E08 on Fatigue and Fracture and the European Structural Integrity Society (ESIS) served as sponsors. The symposium chairmen and co-editors of this volume were Richard E. Link, United States Naval Academy, Annapolis, MD and Kamran Nikbin, Imperial College, London, England.

Kamran Nikbin
Imperial College

Richard Link
United States Naval Academy
Contents

Overview vii

SEDLOW LECTURE

Trends in High Temperature Structural Integrity Assessment—
G. A. Webster 3

CREEP ASSESSMENT

European Code of Practice for Creep Crack Initiation and Growth Testing
of Industrially Relevant Specimens—B. Dogan, U. Ceyhan, K. M. Nikbin,
B. Petrovski, and D. W. Dean 23

Creep Crack Growth Predictions in Component Using a Damage Based
Approach—M. Yatomi and K. M. Nikbin 43

Modelling the Redistribution of Residual Stresses at Elevated Temperature
in Components—H. Lee and K. M. Nikbin 54

CREEP MODELING

Probabilistic Analysis of the Creep Crack Growth Rate of Type 316LN Stainless
Steel by the Monte Carlo Simulation—W. G. Kim, S. J. Kim, W. S. Ryu,
and S. N. Yoon 71

Mechanistic Studies of High-Temperature Crack Initiation in Single Crystal
Materials—E. P. Busso, N. P. O’Dowd, and L. G. Zhao 81

Creep Crack Growth Analysis of Welded Joints for High Cr Heat Resisting Steel—
M. Tabuchi, H. Hongo, T. Watanabe, and A. T. Yokobori, Jr. 93
Prediction of Scatter in Creep Crack Growth Data from Creep Failure Strain Properties—K. WASMER, K. M. NIKBIN, AND G. A. WEBSTER 102

Fatigue Damage and Analysis

Fatigue Strength in Presence of Inhomogeneities: Influence of Constraint—S. BERETTA, M. CARBONI, AND M. MADIA 137

Detection of Crack Initiation by Observations of Free Surface-Condition—K. GOMI, K. FUKUDA, K. TANIUCHI, AND S. S. YOSHIDA 148

Volumetric and Surface Position Annihilation Studies of Fatigue Damage Accumulation in a Steel Alloy—C. D. GLANCEY AND R. R. STEPHENS 158

Elasto-Viscoplastic Behavior of the Ferritic Stainless Steel AISI 441-EN 1.4509 from Room Temperature to 850 Degree Celsius—P. O. SANTACREU, L. BUCHER, A. KOSTER, AND L. REMY 168

Life Prediction of Fretting Fatigue of Ti-6Al-4V—O. JIN, J. CALCATERA, AND S. MALL 174

The Effect of Large Strain Cycling on the Fatigue Strength of Welded Joint—K. OKUYA AND Y. KONDO 195

A Robust Structural Stress Parameter for Evaluation of Multiaxial Fatigue of Weldments—P. DONG AND J. K. HONG 206

Fatigue Crack Growth

Simulation on the Decrease in Threshold Stress Intensity Factor (SIF) Range due to High Maximum SIF—T. MESHII, K. ISHIHARA, AND T. ASAKURA 234

Anomalous Fatigue Crack Growth Data Generated Using the ASTM Standards—S. C. FORTH, J. C. NEWMAN, JR., AND R. G. FORMAN 244

Development of a Circumferentially Throughwall Cracked Tube Specimen for Fatigue Crack Growth Rate Tests—B. A. YOUNG, W. A. VAN DER SLUYS, AND P. J. KING 256
ENVIRONMENTAL FRACTURE

Effect of Microstructure on Pit-to-Crack Transition of 7075-T6 Aluminum Alloy—K. JONES AND D. HOEPPNER 271

FRACTURE MECHANICS ANALYSIS

Elastic T-Stress Solutions of Embedded Elliptical Cracks Subjected to Uniaxial and Biaxial Loadings—J. QU AND X. WANG 295

Asymptotic Stress Fields for Thermomechanically Loaded Cracks in FGMs—N. JAIN, R. CHONA, AND A. SHUKLA 309

Experimental Evaluation of the J or C Parameter for a Range of Crack Geometries—C. M. DAVIES, M. KOURMPETIS, N. P. O’DOWD, AND K. M. NIKBIN 321

FRACTURE TOUGHNESS AND CONSTRAINT

An Experimental and Numerical Study on the Fracture Strength Of Welded Structural Hollow Section X-Joints—T. BJORK, G. MARQUIS, V. PELLIKKA, AND R. ILVONEN 343

Constraint Corrected J-R Curve and Its Application to Fracture Assessment for X80 Pipelines—X. K. ZHU AND B. N. LEIS 357

Use of Miniaturized Compact Tension Specimens for Fracture Toughness Measurements in the Upper Shelf Regime—E. LUCON, M. SCIBETTA, R. CHAOUADI, AND E. VAN WALLE, 374

An Investigation of Specimen Geometry Effects on the Fracture Behavior of a Polytetrafluoroethylene Polymer—J. A. JOYCE AND P. J. JOYCE 390

Surface Roughness, Quasi-Static Fracture, and Cyclic Fatigue Effects on GFRP and CFRP-Concrete Bonded Interfaces—T. O. LAWRENCE AND D. BOYAJIAN 407

DUCTILE-BRITTLE TRANSITION

Temperature Dependence and Variability of Fracture Toughness in the Transition Regime for A508 Grade 4N Pressure Vessel Steel—T. R. LEAX 425

Application of the Reference Temperature to the Evaluation of Cleavage Fracture in HSLA-100 Steel—S. M. GRAHAM, G. P. MERCIER, AND B. P. L’HEUREUX 445

Prediction of the Shape of the K_f Ductile-to-Ductile Transition Temperature Curve for Ferritic Pressure Vessel Steels Using the Material’s Resistance to Crack Extension K_f versus Δa Curve—G. WARBLE AND W. GEARY 457
Finite Element Simulation of Dynamic Crack Propagation for Complex Geometries without Remeshing—F. R. Biglari, A. Rezaeinasab, K. Nikbin, and I. Sattarifar 469

Analysis of Dynamic Fracture and Crack Arrest of an HSLA Steel in an SE(T) Specimen—R. E. Link 485

Application of the Normalization Method to Dynamic Fracture Toughness Testing of Alloy 718—S. M. Graham 511
Overview

This book is a presentation of work of several authors at the Fifth International ASTM/ESIS Symposium on Fatigue and Fracture, May 18–20, 2005, Reno, NV. Fatigue and fracture methodologies depend upon robust and accurate models of the damage accumulation and failure mechanisms that operate within the structures as well as an accurate characterization of the material response to the combined effects of loading, loading rate and environmental conditions. The combination of competing failure mechanisms and varying environmental conditions during the operational life of a component can make it a challenge to accurately predict its life. Hence the scope for this symposium captures the latest research covering state of the art work on fracture mechanics related topics such as fracture, fatigue, residual stress, creep, creep/fatigue, constraint and stress corrosion and links them to concepts used in structural integrity assessment. Furthermore the subject does not restrict itself to metallic materials but is applicable to polymers, composites as well as inhomogeneous materials. Papers and presentations delivered by nationally and internationally recognized authors were chosen to cover the general areas of modelling, testing and validation in crack dominant related research. It is felt that improvements in life assessment methods will only come about when validated fracture mechanics models are developed to produce verifiable predictions. Hence an emphasis on linking experimental and modelling techniques in the papers published in this volume should lead to the development of more accurate life assessment methods.

The papers contained in this publication represent the commitment of the ASTM Committee E-08 to providing the latest research information in the wide-ranging fracture mechanics field. The themes in the papers cover experimental results coupled to modelling techniques of linear, non-linear, time independent and dependant behaviour of cracked geometries of a range of materials. Papers relating to residual stress, crack tip constraint and probabilistic methods of analyses also highlight the importance of developing these fields for future improvements in life assessment methods.

Kamran Nikbin
Imperial College

Richard Link
United States Naval Academy