SUBJECT INDEX

300M steel, 158

A

AISI 441, 158
Alloy 718, 511
Aluminum alloys, 174, 234, 271
ASTM E 647, 244
ASTM E 1457, 23, 115, 321
ASTM E 1820, 390, 511
ASTM E 1921, 445, 457
Austenitic stainless steel, 23, 71, 102, 115

B

Behavior model, 168
Biaxial loading, 295
Brittle crack initiation, 485
Brittle fracture, 343
BS 7910, 54

C

Carbon fiber reinforced polymer-concrete, 407
Carbon-manganese steel, 23, 43, 115
Carbon steel, 234
Charpy testing, 374, 445
Cleavage fracture, 445
Code of Practice, 23, 115
Compact tension specimen, 23, 43, 321
miniature, 374
Constraint effects, 295, 357
Constraint factor, 137
Corrosion cracking, 281
Corrosion fatigue, 271
Crack arrest, 485
Crack closure, 115, 195, 244
Crack extension
ductile, 309
resistance, 457
Crack growth
corrections, 390
creep, 3, 23, 43, 71, 93, 102, 115, 321
fatigue, 234, 244
rate, 43, 71, 256
Crack initiation, 148
creep, 23, 115
high-temperature, 81
Type IV, 93
Crack mouth opening displacement, 321
Crack propagation, 256
dynamic, 469
Cracked tube, 256
Crack tip, 309
Creep, 43, 54, 81, 93
deformation, 3
ductility, 102
structure, 93
Creep fracture parameter, 3, 23, 43, 102, 115, 321
Creep properties, uniaxial, 102
Creep stress relaxation rate, 54
CRETE, 23
Cyclic large strain, 195
Cyclic loading, 225, 407
Cyclic stress-strain diagram, 148
Cyclic temperature fluctuation, 225

D

Data scatter, 425
Defect shape, 137
Differential thermography, 225
Double edge notch specimen, 321
Ductile fracture, 343, 374
Ductile tearing initiation, 374
Ductile-to-brittle transition, 457
Dynamic fracture, 485
Dynamic tear energies, 445

E

Earthquakes, 195
Edge crack, 185
Elastic-plastic-creep analysis, 43, 54
Elastic-plastic fracture, 321, 390
Elastic T-stress, 295
Embedded elliptical crack, 295
Elasto-viscoplastic behavior, 168
EN 1.4509, 168
Eta factor, 321

F

Failure assessment, 357
Fatigue crack, 225, 256
growth, 244
nucleation, 158
Fatigue damage, 148
Fatigue life, 158
Fatigue limit, 195
Fatigue strength, 147, 195
Fatigue thresholds, 137
Ferritic stainless steel, 168
Finite element analysis, 43, 81, 93, 185, 206,
321, 469, 485
three-dimensional, 295
Fracture, 81, 407
Type IV, 93
Fracture mechanics, 3, 23, 43, 115, 185, 234,
445, 485
linear, 195
Fracture toughness, 357, 425, 445, 457
dynamic, 485, 511
measurement, 374
Fretting fatigue, 174, 185
Functionally graded materials, 309

G

Genetic algorithm, 234
Geometry effects, 390
Glass fiber reinforced polymer-concrete, 407

H

Heat affected zone, 93
High Cr heat resisting steel, 93
High strength low alloy steel, 445, 485
High temperature, 43
redistribution of residual stresses, 54
structural integrity assessment, 3
Holistic models, 185

I

Incubation period, 3
Inhomogeneities, 137
Isochromatics, 309

J

J-integral, 374, 390
J-Q theory, 357
J-R curve, 357, 374

K

Kitagawa diagram, 137

L

Least square fitting method, 71
Life prediction, 174
Lifetime assessment, 3
Linear elastic fracture mechanics, 256, 469
Loss of constraint, 374
Low cycle fatigue, 148
Lüder band, 148

M

Master Curve, 425, 457
Maximum energy release rate, 469
Mean value method, 71
Mesh-insensitive structural stress method, 206
Microcracks, 81
Micro-notches, 137
Microstructure, 271
Modified Gough's ellipse, 206
Monte Carlo simulation, 71
Multiaxial fatigue, 43, 206
Nickel base superalloy, 81
Node releasing, 469
Nondestructive evaluation, 158
Normalization method, 390, 511
Orange peel, 148
Overload, 54
Photo-emission, 225
Pipe, 43, 357
Pitting corrosion, 271
Plastic deformation, 195
Plastic zone, 225
Polytetrafluoroethylene, 390
Positron annihilation, 158
Potential, applied, 281
Potential drop, 256
Pre-crack, 195
Pressure vessel steels, 457
Pressurized water reactor, 256, 374, 425
Probabilistic methods, 71, 102
Process zone, 225
R6, 54
Reference stress, 43
Reference temperature, 445
Redistribution, 54
Residual stress, 3, 54
Resistance curve, 457
Scanning electron microscopy, 271
Seismic loading, 195
Sensitivity analysis, 54
Side grooves, 390
Simulation, 234
Single contourd cantilever beam, 407
Single crystal materials, 81
Single edge notched specimens, 321, 357, 485
Specimen geometry, 115, 256, 321
Static fracture mode, 234
Strain energy density, 469
Stress corrosion cracking testing, 281
Stress fields, asymptotic, 309
Stress intensity equation, 256
Stress intensity factors, 54, 295
Mode I, 185
threshold range, 234
Structural hollow section, 343
Structural integrity assessment, high
 temperature, 3
Structural stress parameter, 206
Surface condition, 148
Surface diffusion, 81
Surface roughness, 407
Thermelasticity, 225
Thermomechanical fatigue, 168
Thermomechanical loading, 309
Titanium alloys, 174, 234
T-plate, 54
Transition curve shape, 457
Transition regime 425
Tubular T-joint, 54
Type IV fracture, 93
Uniaxial loading, 295
Welded joint, 3, 93, 195, 206, 343
Work hardening, 374

X

X80 steel, 357
X-joint, 343

Z

Zirconium alloy, 281