SUBJECT INDEX TO 1963 REFERENCES

1. GENERAL (No SPECIFIC MATERIAL)

1.1 Basic research, nature of fatigue:
1.1.4 Correlations, mechanical properties: A-7
1.1.4.3 Tensile and impact: A-42
1.1.5 Deformation and fracture mechanisms: D-7, D-8

1.3 Geometric factors:
1.3.1 Size: A-32, A-61

1.4 Surface factors:
1.4.5 Surface hardening, cold work: A-22

1.5 Other influencing variables:
1.5.1 Speed: A-41
1.5.4 Type of loading: B-4, D-6

1.6 Environmental factors: A-10, B-2
1.6.1 Temperature: A-41
1.6.3 Fretting: A-8
1.6.5 Thermal cycling, strain cycling, low cycle fatigue: A-57, D-2

1.7 Fatigue damage and measurement:
1.7.2 Crack propagation: A-16, A-57, A-59, A-61, B-4
1.7.3.5 Step, sequential, spectrum tests: A-24, A-46, A-53

1.8.1 Fatigue machines: A-50
1.8.2 Control apparatus: A-50
1.8.3 Statistical approaches: A-1, A-7, A-19, D-4

1.10 Fatigue properties of structures and machines:
1.10.1 Joints and joining methods:
1.10.1.2 Bolts and bolted joints: A-58
1.10.1.3 Spot welds and other fusion welded joints: A-32
1.10.2 Other components of machines and structures: A-14

1.12 Theoretical discussions, general review:
1.12.1 Theoretical treatments, fatigue and related effects: A-48
1.12.2 Historical summaries: A-10

2. IRON AND STEEL

2.1 Basic research, nature of fatigue: C-3
2.1.4 Correlations, mechanical properties: A-38
2.1.4.1 Anelasticity: A-37

2.2 Composition and processing variables:
2.2.2 Microstructure:
2.2.2.1 Grain size or particle size: C-3

2.3 Geometric factors:
2.3.1 Size: A-38
2.3.4 Stress concentrations: A-9

2.5 Other influencing variables:
2.5.2 Mean stress, alternating stress: A-9

2.6 Environmental factors:
2.6.1 Temperature: B-3
2.6.1.2 Low: A-17
2.6.5 Thermal cycling, strain cycling, low cycle fatigue: A-13, A-62

2.7 Fatigue damage and measurement:
2.7.2 Crack propagation: A-13
2.7.3 Cumulative damage: A-23, B-3
2.7.3.1 Prior stress or strain history: A-11

2.8 Test methods and machines:
2.8.3 Statistical approaches: D-5

2.10 Fatigue properties of structures and machines:
2.10.1 Joints and joining methods:
2.10.1.2 Bolts and bolted joints: A-44
2.10.1.3 Spot welds and other fusion welded joints: A-17
2.12 Theoretical discussions, general review:
2.12.1 Theoretical treatments, fatigue and related effects: A-48

4. ALUMINUM ALLOYS

4.1 Basic research, nature of fatigue: A-28
4.1.5 Deformation and fracture mechanisms: A-28

4.2 Composition and processing variables:
4.2.2 Microstructure: C-2

4.3 Geometric factors:
4.3.4 Stress concentrations: A-26, B-5

4.5 Other influencing variables:
4.5.4 Type of loading: A-55

4.6 Environmental factors: A-30
4.6.1 Temperature: B-3
4.6.1.2 Low: A-57
4.6.3 Fretting: A-26
4.6.5 Thermal cycling, strain cycling, low cycle fatigue: A-62
4.6.6 Humidity: A-15
4.6.8 Vacuum: A-30

4.7 Fatigue damage and measurement:
4.7.1 Detection of damage: A-27
4.7.2 Crack propagation: B-6, C-2
4.7.3 Cumulative damage: A-23, B-3
4.7.3.1 Prior stress or strain history: A-11
4.7.3.5 Step, sequential, spectrum tests: A-45, A-55

4.8 Test methods and machines: A-18, A-27

4.10 Fatigue properties of structures and machines:
4.10.1 Joints and joining methods:
4.10.1.1 Rivets and riveted joints: C-1
4.10.1.2 Bolts and bolted joints: A-44
4.10.1.3 Spot welds and other fusion welded joints: B-1
4.10.3 Large scale structural and machine members: A-12
4.12 Theoretical discussions, general reviews:
 4.12.2 Historical summaries: A-33

5. Copper Alloys
5.1 Basic research, nature of fatigue: A-29
 5.1.5 Deformation and fracture mechanisms: A-49
5.2 Composition and processing variables:
 5.2.1 Composition:
 5.2.1.1 Alloying elements: A-29

7. Titanium Alloys
7.5 Other influencing variables:

7.5.1 Speed: A-35
 7.5.4 Type of loading: A-35
7.6 Environmental factors:
 7.6.1 Temperature:
 7.6.1.1 High: A-35
7.7 Fatigue damage and measurement:
 7.7.3 Cumulative damage:
 7.7.3.1 Prior stress or strain history: A-11

10. Ceramic Materials
10.6 Environmental factors:
 10.6.3 Fretting: A-31